Introduction

Velocity of a moving body is a vector quantity having magnitude and direction. A change in the velocity requires any
of the following conditions to be fulfilled:

* A change in the magnitude only
* Achange in the direction only
# A change in both magnitude and direction

The rate of change of velocity with respect to time is known as acceleration and it acts in the direction of the change
in velocity. Thus acceleration is also a vector quantity. To find linear acceleration of a point on a link, its linear velocity is
required to be found first. Similarty, to find the angular acceleration of a link, its angular velocity has to be found. Apart
from the graphical method, algebraic methods are also discussed in this chapter. After finding the accelerations, it is
easy to find inertia forces acting on various parts of a mechanism or machine.

31 ACCELERATION

Let a Iink (4, of length r, rotate in a circadar path in the ¢lockwise direction as shown in Fig. 3.1(a). It has an
instantaneous angular velocity wand an angular acceleration @ in the same direction, i.¢., the angular vetocity
increases in the clockwise direction,
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|[Fig. 31%

Tangential velocity of 4, v, = @ r
In a short interval of time &, let (.4 assume the ncw position Q4" by rotating through a small angle 68
Angular velocity of O4", @, = 0+ a §¢
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Tangential velocity of 4, v/, = (@ + a ) r
The tangential velocity of 4 may be considered to have two components; one perpendicular to 04 and
the other parallel to OA.

Change of Velocity Perpendicular to OA

Velocity of A Lto Q4 = v,
Velocity of 471 to 04 =¥ cos 68
. change of velocity = v’, cos 88 - v,

Acceleration of A4 L to 04 - @& .0t)r cos 86 — oor

o1
In the bimit, as ¢ — 0, cos 68— 1

. accelerationof 4 Lo O4 = r

(%) o8

_ oy
T 3-1)
This represents the rate of change of velocity in the tangential direction of the motion of A relative to O,
and thus is known as the fangential acceleration of A relative to O. It is denoted by /7.

Change of Velocity Parallel to OA

Velocity of 4 parallel to 04 =0
Velocity of 4" parallel to O4 =+’ sin 68

.. change of velocity =v’,sind6-10
) (W+adnrsindé
Acceleration of 4 parallel to 04 = 5
In the limit, as 8¢ — 0, sin 68 — 50
. de
Acceleration of 4 parallel to O4 = @r 7
- 4o
=@ro o O=
= @’r (3.2)
2
= (v=ar (3.3)
¥

This represents the rate of change of velocity along (4, the direction being from A towards O or towards
the centre of rotation. This acceleration is known as the centripetal or the radial acceleration of A relative to

O and is denoted by Joo.

Figure 3.1(b) shows the centripetal and the tangential components of the acceleration acting on 4. Note
the following:
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1. When or=0, i.e., O4 rotates with uniform angular velocity, /i, =0 and thus £° represents the total
acceleration.

2. When w= 0, ie., 4 has a linear motion, /¢, = 0 and thus the tangential acceleration is the total
acceleration.

3. When o is negative or the link 04 decelerates, tangential acceleration will be negative or its direction
will be as shown in Fig. 3.1(c).

Total acceleration vectors are denoted by small letters with a subscript ‘1" attached. The meeting point of
its components may be denoted by any of the small letters used for the total acceleration with a subscript of
the other.

For example, components of the total acceleration o, can be writien in either of the two ways:

l. e,0,and 0,2, as in Fig. 3.1 (b)
2. 0,a,and a,a, as in Fig. 3.1 (c)

Note that the centripetal acceleration is denoted by the same letiers as are in the confi guration diagram but

the positions are changed.

The configuration and the velocity diagrams of a four-link mechanism discussed in Sec. 2.5 have been

reproduced in Figs 3.2(a) and (b). Let cx = angular acceleration of A8 at this instant, assumed positive, i.c.,
the speed increases in the clockwise direction.

a,, d,

a,, dy
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For the construction of the acceleration diagram, a vector equation for the same can be formed similar to
the one applied to the velocity diagram.
Acc. of Crel. 10 4 = Acc. of Crelo 10 B +Acc. of Brel. ta 4

ft‘a - fch + fha
or

fea= fou * T
or

die; =a,b; + bie,
Each of these accelerations may have a centripetal and a tangential component. Thus, the equation can be
expanded as shown below:
L R A
or

d e tege =a b, +b by +by oy +o g

Set the following vector table:

SN Yector ;lagnitudc Direction Sense
1. . 3 |48
f;, orayb, (aby I -4
AB
2. £ orbgby ux A8 tABors, b, or]ab — b
ha a
3. : 2 BC
fop oTbycy (bey ” a
BC
4. {7, or ety - 1BC ot by -
5. ¢ 3 1 DC - D
f.;ordyeq (dey |
DU
6. £ ore,e, - LDC or dicy - ;

Construct the acceleration diagram as follows:

(a) Select the pole point a; ord,.

(b) Take the first vector from the above table, i.c., take a,b,toa convenient scale in the proper direction
and sense.

{c) Add the second vector to the first and then the third vector to the second.

(d) For the addition of the fourth vector, draw a line perpendicular to BC through the head ¢, of the third
vector. The magnitude of the fourth vector is unknown and ¢ can lie on either side of ¢,

(e) Take the fifth vector rrom d,.

(f) For the addition of the sixth vector to the fifth, draw a line perpendicular to DC through the head ¢, of
the fitth vector.
The intersection of this line with the line drawn in the step (d) locates the point ¢;.
Total acceleration of 8= a, by
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Total acceleration of C relative to B =b, ¢,
Total acceleration of C = d, ¢,

Angular Acceleration of Links

From the foregoing discussion, it can be observed that the tangential component of acceleration occurs due
to the angular acceleration of a link.

Tangential acc. of B rel. to 4,
f5a = 0.4B = a.BA
where ¢ = angular acceleration of the link AB

Thus, angular acceleration of a link can be found if the tangential acceleration is known.
Referring to Fig. 3.2,

Tangential acc. of C rel. to B, fcth = Oy €
L.e., acceleration of C relative to P is in a direction ¢, 1o ¢, or in a counter-clockwise direction about 3.
As J'a= 0 CB
Q= f'/CB
Tangential acc. of Brel. to C, fr. =€, ¢y
ie., acceleration of B relative to C is in a direction ¢, to ¢, or in counter-clockwise direction about C with

magnitude, o, = fy. / BC which is the same as &,
Thus, angular acceleration of a link about one extremity is the same in magnitude and direction as the
angular acceleration about the other.

Tangential acc. of Crel. to D, f§¢ =¢q €

1e., Crelative to D moves in a direction from ¢, to ¢, or € moves in the counter-clockwise direction about
D.

o =t _
“"¢cp CD

-

N OF INTERMEDIATE AND OFFSET POINTS = '

Intermediate Point
The acceleration of intermediate points on the links can be obtained by dividing the acceleration vectors in
the same ratio as the points divide the links. For point £ on the link 8C (Fig. 3.2},

BE by e

BC bl [}

a, e, gives the total acceleration of the point £,

Offset Points

The acceleration of an offset point on a link, such as F on BC (Fig. 3.2), can be determined by applying any
of the following methods:
1. Writing the vector equation,
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Iy * fho= £+ 1q

or foa t =1, + 1,
or foa + 15 +1g =Ty +15 +15
or aby + byfy + ff, = dye, + £,£, + £.f,

The equation can be easily solved graphically as shown in Fig. 3.2(d). a,f; represents the acceleration of
Frelative to 4 or D.
2, Writing the vector equation,

fo=tp+1,,

=t +1p
or a,fy =a.b +bf, + 1,
f,q already exists on the acceleration diagram.
2
b
g = %F?_‘” FB, direction towards B.

fg, =0, X FB =0, X FB

= ECE X FB 1 to FB; direction b to T

Oy, = oy, because angular acceleration of all the points on the link BCF about the point B is the same
{counter-clockwise).

f., can be found in this way.

3. By acceleration image method In the previous chapter, it was mentioned that velocity images are
useful in finding the velocities of offset points of links. In the same way, acceleration images are also
helpful to find the accelerations of offset points of the links. The acceleration image Y
of a link is obtained in the same manner as a velocity image. It can be proved that
the triangle by, f; is similar to the triangle BCF in Figs 3.2(d) and (a).

Let @’ = angular velocity of the link BCF
o = angular acceleration of the link BCF
Referring to Figs 3.2(a) and 3.3,

bify _ 0°BF BF aBF  fufy

biey @2BC BC aBC ¢yey
b f,f, and b,c,c, are two right-angled triangles in which the ratio of the two
corresponding sides is the same as proved above. Therefore, the two triangles are

similar.
b fi _BF _ £
b,¢, BC
Also, £f, by fy = Ley by ¢
or Zibfy = ZLeyb £y = Zeybie, - Leyb,f,

or L3=22=11 (byfy i BF,bycy || BC)
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Now, in As b f\e, and BFC,

3= 2]
; bf, BF
an b,c, BC

Therefore, the two triangles are similar,

Thus, to find the acceleration of an offset point on a link, a triangle similar to the one formed in the
configuration diagram can be made on the acceleration image of the link in such a way that the sequence of
letters is the same, i.c., b,f,¢, is clockwise, so should be BFC.

An easicr method of making the triangle b,f, similar to BFC is by marking BC' on BC equal to bye, and
drawing a line parallel to CF, meeting BF in F'. BC'F” is the exact size of the triangle to be made on b,¢;.
Take bf, = BF and ¢\, = C' F".

Thus, the point f; is obtained.

44 - SLIDER-CRANK MECHANISM

The configuration and the velocity diagrams of a slider-crank mechanism discussed in Sec. 2.8 have been
reproduced in Figs. 3.4(a) and (b).
Writing the acceleration equation,
Acc.of Brel.wo O =Acc.of BreL to 4 +
Acc.of Arel. 10 O

f-‘m = fhu + fuu

rhg = fuo + fba = fcm + f;;a +f.’:u
g by=0ya,+a b, +b,b

The crank 4 rotates at a uniform >39
velocity, therefore, the acceleration of
A relative to O has only the centripetal
component. Similarly, the slider moves in a
linear direction and thus has no centripetal
component.
Setting the vector table:
SN Vector Magnitude Direction - Sense
1. ., Or 0.8, (oa)” | 04 -0
04
2. £, ora b, (ab)’ 4B > A
AB
3. f), orb, b, - 1 4B -
4, fie 0T 811 - ij to line of motion of B -
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Construct the acceleration diagram as follows:
1. Take the first vector {, .
. Add the second vector to the first,

2
3. For the third vector, draw a line L to 48 through the head b, of the second vector.
4

. For the fourth vector, draw a line through g, parallel to the line of motion of the slider, .

This completes the velocity diagram.

Acceleration of the slider B = o, b, {arg, b))

Total acceleration of B relative to 4 = a, b

Note that for the given configuration of the mechanism, the direction of the acceleration of the slider is
~-0ppasite to that of the velocity. Therefore, the acceleration is negative or the slider decelerates while moving

to the right.

Figure 3.5(a) shows the
" configuration diagram of a
Jour-link mechanism along
with the lengths of the links
in mm. The link AB has
an instantaneaus angular velocity of 10.5 radls
and a retardation of 26 rad/s? in the cointer-
clockwise direction. Find :

(i) the angular accelerations of the links BC

Example 3.1

and CD "
(5i) the linear accelerations of the points E, F

and G

0.525

ad
0.39
{m/e}
b

Solution v, = 10.5 x 0.05 = 0.525 m/s

Complete the velocity diagram {Fig. 3.5(b)] as
explained in Exampié 2.1.

Writing the vector equation for acceleration,

Acc. of Crel. to 4 = Acc. of Crel. to B + Ace, of
Brel. tod

rca = rcb + f{m

or f,=f, +f,

or di¢g;=a b +be

Each vector has a centripetal and a tangential
component,

Lot =T+ g, + 05+ ob

or  dyegtey¢;=b,+b,b;+b ¢, +¢, ¢

Set the vector table (Table 1) on the next page.

Draw the acceleration diagram as follows:

(i) Take the pole point a, or d, [Fig. 3.5(c).

(i) Starting from a,, take the first vector a, b,.

(iii) To the first vector, add the second vector and
to the second vector, add the third.

(iv) The vector 4 is known in direction only.
Therefore, through the head ¢, of the third
vector, draw a line, L to RC. The point ¢, of
the fourth vector is to lie on this line.

(v) Start with d, and take the fifth vector d, c,.
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Vector Magnitude (m/s?) Direction Sense
: bY  (0.525)
1. £e b (ab)” _ = AB A
2. f}, orb,b, X AB=26x0.05=13 LA4Bor| ab —a
o 2 2 '

3. . orb,c (be)” _ (034)° _ BC B

Y iy BC 0.066 1.75 Il . -
4. & orbye; iB

. 2 2 .

s. <, or dye, ey _ 039 _ I DC >D

o ord, e 5 2.72
6. £, orege, 1B -

(vi} The sixth vector is known in direction only,
Draw a Jine 1L to DC through head ¢, of the
fifth vector, the intersection of which with
the line in the step (d) locates the point c.
(vii) Joina,b,, bye, and d,c,
Now, a/b, represents the total accelerations of
the point B relative to the point 4.

Similarly, bye, is the total acceleration of €
relative to B and d,c, is the total acceleration of ¢
relative to D,

p«lo@ In the acceleration diagram shown in Fig. z.5c,
" the arrowhead has been put on the fine joining
points b, and ¢, in such a way that it represents
the vector for acceleration of ¢ relative to 8.
This satisfies the above equation. As the same
equation
fcd =y fcb

can also be put as
fcd + be = fba
die, v b=ah,

This shows that on the same line joining b, and c,,
the arrowhead should be marked in the other direction
so that the vector represents the acceleration of 8
relative te € to satisfy the latter equation.

This implies that in case both the ends of a link are
in motion, the arrowhead may be put in either direction
or no arrowhead is put at all. This is because every time
it is not necessary to write the acceleration equation.

The acceleration equation is helpful only at the initial
stage for better comprehension.]
(i} Angular accelerations

t
_ T orey g
ab -

‘ BC
2.25
=" = 3409 rad/s?
0066 - 2209 rad/s?
counter-clockwise
o - fi, orc,c, _ 44
ed CD 0.056

= 79.1] rad/s? counter-clockwise

(it) Linear accelerations
(a) Locate point e, on b, ¢, such that

be, BE
b, BC

fo =ae =515 m/s?

(b) Draw A bhye,f, similar to A BCF keeping in
mind that BCF as well as b,c,f; are read in
the same order (clockwise in this case).

fi=a,f, =442 m/s?

(¢) Linear acceleration of the point G can also be
found by drawing the acceleration image of
the triangle DCG on d, ¢, in the acceleration
diagram such that the order of the letters
remains the same.

Je=dig, =39 m/s 2
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Example 3.2  For the configuration of
a slider-crank mechanism
shown in Fig. 3.6(a), calculate
the

(i} acceleration of the slider at B
(i} acceleration of the point E
(iii) angular acceleration of the link AB
OA rotates at 20 rad/s counter-clockwise.

LI T

" Fig. 36

Solution v, =20 x0.48=9.6m/s

Complete the velocity diagram as shown in Fig.

3.6(b).
Writing the vector equation.
fbo = fha + fao
or  f, =T+,
= f:u + r‘;a + fktm
or g/ b,=o0,a+ab,+b, b
Set the vector table (Table 2) as given below.
The acceleration diagram is drawn as follows:
(a) Take the pole point ¢, or g, [Fig. 3.6 (¢)].

{b) Take the first vector 0,a, and add the second
vector.

(c) For the third vector, draw a line 1 to AB
through the head b, of the second vector.

{d) For the fourth vector, draw a line || to the
line of motion of the slider through g;. The
intersection of this line with the line drawn
in the step (d} locates point by,

{¢) Joina; by,

() 7, =gb, =72 m/s*
As the direction of acceleration f, is the same
as of v,, this means the slider is accelerating
at the instant.

(ii) Locate point €, on b,a, produced such that

be, _ BE

ba _ BA

/.= 0,8, = 236 m/s?
ol byw 167
) G = =g " 45~ 16

= 104 rad/s® counter-clockwise

Figure 3.7(a) shows confi-
guration ~ of an  engine
mechanism. The dimensions
are the following:
Crank OA = 200 mm; Connecting rod AB = 600
mm: distance of centre of mass from crank end,
AD = 200 mm. At the instant, the crank has an
angular velocity of 50 rad/s clockwise and an
angular acceleration of 800 rad/s’. Calculate the
(i) velocity of D and angular velocity of AB
(ii) acceleration of D and angular acceleration

Example 3.3

of AB
Emuble 2
SN Vector Magnitude (m/s?) Direction Sense
Y (9.6)
]. fc oro, a (oa) o ( = 2 H OA -"—)()
o T T 04 NYTI
' @y _ (525
2. fo ora; b a = =17.2 L] -4
ba T8 Ta AB 1.60
3. fi, orb, b, L4B -
4. fop0r gy By |l to slider motion




(iii} point on the connecting rod which has zero
acceleration at this instant.

et T A
/.’D

(b)
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Writing the vector equation,
fbn = fba + rau

or  f, =, +1,

= f:o +fs:o + rl:a +rl

or glbl=olao+anal+alba+babl

Set the vector 1able (Table 3) as given below,

The acceleration diagram is drawn as follows:

(a) Take the pole point o, or g, {Fig. 3.7(c)].

{b) Take the first vector o,a,.

(¢) Add the second vector to the first and then
the third vector to the second,

{d} For the fourth vector, draw a line L to AB
through the head b, of the third vector.

(e} For the fifth vector, draw 2 line || to the
line of motion of the slider through g,. The
intersection of this line with the line drawn
in step (d) locates point b,.

‘ (f) Joina; by
Solution: v, =50 x 0:2 = _10 m/s o (it) Locate point d, on b,a, produced such that
Complete the velocity diagram as shown in Fig. b, d, BD
3.7(b). b,a, BA
()  Velocity of D =od = 8.8 m/s fy=0,d, = 372 m/s?
ﬁngular velocity of AB = ab/AB = 5.2/ 0.6 . - i _ bb 321
= 8.67 rad/s. ab AR AB 0.6
= 868 rad/s? clokwise
SN Vector Magnitude (m/s%) Direction Sense
2 2
o) _ (10y
1. fS, ore, & = = 04 -0
w0 T o 0A o 700 |
2. fy, ora, a, o x AB =800 = 0.2 =160 lLo4dorijoa —a
. , .
b) (3.2)
3 f¢ ora, b (a = = | B -4
be OF 81 %5 AB 06 B
4, fi, orb, b, - L AB -
5. fgorg b || to stider motion -
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E

§Fig. 344

To find the point on the connecting rod which has
zero acceleration at this instant, draw triangle ABE
. on the configuration diagram similar to a,b,0, such
that the letters are in the same order, i.e., clockwise
(Fig. 3.8). Then £ is a point on the connecting rod
with zero acceleration as it corresponds to zero
acceleration of point O.

Example 3.4  In the mechanism shown in
Fig. 3.9}, the crank OA
rotates af 210 rpm clockwise.

: For the given configuration,
determme the acceleration of the iRy D ﬂ‘
angular acceleration of the link CO.

2r %210
60
Complete the velocity diagram as follows:

yTuble &

Solution v, = x0,1=2.2m/s

__j(mm}
(a)

&lw%

s Forthefour-link mechanism Q4 80, complete
the velocity diagram as usual [Fig. 3.9(b)].
+ Locate point c cm vector ob extended so that

-1 -R = -- -
by 2180 %
¢ Draw a horizontal line through g for the vector
Vg ond a line LCD for the vector v, the
intersection of the two locates the point d.
Thus the velocity diagram is completed.
Set the vector table (Table 4).

S.N. Vector Magnitude (m/s?) . Direction Sense
2 2 o
L fs, or o) & (00) _ P2 54 o4 -0
04 0.1 ' -
2 5, ora, b, @y _ 429y . Y48 —4
4B 03 o
3. i, orb, b, - . 1AR
bq q 50 =925
5. foq OF by by - o kBQ .
6. f5, or ¢ ¢4 (cdy _ AOly | cD SC
CD 04 _
7. fi. orcy 4, - tcp -
8, fdgor [ 1] d| - I[| o Sﬁdel' mOthﬂ -




The acceleration diagram is drawn as follows;

(i) From the pole point o, take the first vector
0.8, [Fig. 3.9(c)].

(i)} Add the second vector by placing its tail
At A;.

(iif} For the third vector ff,, draw a line 1AB
through b,

(iv) ‘Add the fourth vector by placing its tail at q,
and to add the fifth vector ft_, draw a line
LBQ through b Intersection of the two
lines locates point b,.

(v) Locate point ¢; on the vector q;b; by
extending it so that

aq, _ CQ _ 300

baq  BQ 180

(vi} Add the vector for centripetal acceleration

fgcof link CD by placing its tail at ¢,

and for its tangential component, draw a
perpendicular line to it.

(vii) For the vector B, draw a horizontal
line through g, the intersection of this
line with the live drawn in (iii) locates
pointd,.

=1.667.

This completes the acceleration diagram.
Acceleration of slider D =g,d, = 54.4 m/s
Angular acceleration of link CD,

£, ore,d 13.3
a, = ed atl _

- 2
D 04 = 33.25 rad/s

Example 3.5  In the mechanism shown in

' Fig. 3.10(a), the crank OA

rotates at 60 rpm. Determine

(i) linear acceleration of the slider at B

(i) angular acceleration of the links AC, COD
and BD

_ 2 x60

Vo =

Solution x0.15=0.94 m's

Complete the velocity diagram as shown in
Fig. 3.10(b).
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,4.9 b

It is a six-link mechanism. First, consider the
four-link mechanism OACQ and write the vector
equation

fC'U = rra + fﬂO
or f q =Tt 10
ar q, ¢ =03, tae
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Links 4C and CQ each can have centripetal and
tangential components.

fe +fc‘q = fuo + 18 + 15,

or g b, =q,d, +d,b,

From this equation q,d, is already drawn
in the diagram and g;b, is a linear acceleration

or Qe te e, =0,a,+a; ¢, +¢,a component. . ¢
. T = faq + foa +Toa
Set the following vector table (Table 5).
Complete the acceleration vector
o,a,¢,4, as usuat [Fig. 3.10(c})].
Draw Ac,q,d, similar to ACOD such that both
are read in the same sense, i.e., clockwise,
Write the vector equation for the slider-crank
mechanism (DB,

or g,b; =q,d; + d,b, + byb,

Set the following vector table (Table 6).

Complete the acceleration vector diagram

q; d; by gy

(i) fy=g,b;=7Tm/s?  towards left

As the acceleration f,, is opposite to v, the slider
is decelerating.

diagram

f,=f,+1
th b . 1 oree, _13.8_23 Us?
or fig = L4y + T () &, = T 0e” rad/s
counter-clockwise
Vector Magnitude (m/s?) Direction Sense
2 2 '
1. [,ore a (o) _ 034 =592 |04 -0
04 0.15
acy  (1.035Y
2, f;, orac, @) _d.035) 1.79 {14C -4
AC 0.60
3. f), ore,c, - L 4C -
@ _ 14y
4. f, orqc =~ =896 -
e OC  0.145 ec ¢
4
5. feq Or gy - 1LQC -
24
iTable 6
SN Vector Magnitude (m/s%) Direction Sense
1. f, 0orq; d Already drawn . - -
2 2
2, f,;ordb, .(_dﬂ.)_=m=0_49 || DB -D
DB 0.50
3. f{, orb, b, - 1DB -
4, fyg org by - | | to slider motion -




fi, ore,e 20 .
Figa = ! = =138 rad/s”
QC 0.145
counter-clockwise
f; b 7.2
oy =2 —41 orbgby 12 _ 14.4 rad/s?
BD 0.5
clockwise
Example 3.6  In the mechanism shown

in Fig. 3.1ll(a), the crank
04 rotates at 210 rpm
clockwise. For the given
configuration, determine the velocities and
accelerations of the sliders B, D'and F.

E
85 ;
b o} . el
G" , 35
50
A
c/ 2 N

L 2 60

G Ag=gg (MM )
BC =30 G
CE=70
cD=5 (a)

-]
d
a
[+
f b
\o' g' g" g”
{b}
Fig. 3.11;
. 2r x 210
Sofution v =———x02=44m/s

i

Complete the velocity diagram as follows [Fig.
3.1
e For the slider-crank mechanism OAS,
complete the velocity diagram as usual.
¢ Locate the point ¢ on the vector ab.
¢ Draw a vertical ling through ¢’ for the vector

Acceleration Analysis @

vy, and a line LCD for the vector v, the
intersection of the two locates the point d.

s Extend the vector ¢d to e such that cefed =
CEICD.

s Draw a horizontal line through g” for the
vector ¥ fi:” and a line L EF for the vector v,
the intersection of the two locates the point £

Thus, the velocity diagram is completed.
Velocity of slider B = gb = 4.65 m/s
Velocity of slider D=g'd = 2.85 m/s
Velocity of slider #=g"f=10.35 m/s
Set the vector 1able (Table 7) as shown in the
following page:
The acceleration diagram is drawn as
follows:

(i) From the pole point o, take the first vector
o,a, [Fig. 3.11(<)].

(ii) Add the second vector by placing its tail at
b;.

(iii) For the third vector f5, , draw a line LAB
through b, and for the fourth vector a
horizontal line through g, the intersection of
the two lines locates point b,.

(iv) Locate point ¢, on the vector a by

(v) Add the vector for centripetal acceleration
fi. of link CD and for its tangential
component, draw a perpendicular line to it.

(vi) For the vector 7, draw a vertical line through
g’, the intersection of this line to the previous
line locates the point d,.

(vii) Join ¢, d, and locate point e, on its
extension.

(viii) Take the vector 8 and draw ling e, e, parallel

to £F and draw a line for the tangential
component.

(ix) For the vector 10, take a horizontal line
through g,” and the intersection of this with
the previous line locates the peint f,.
This completes the acceleration diagram.
Acceleration of stider B = g;b; = 36.m/s’
Acceleration of slider D =g’ d, =74 m/s
Acceleration of slider F = g”f; =16 m/s
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SN Veem N Magnitude (m/s?) Sense
2 2
L. f3, or e, %}=%=96.& 50
. 2 2
2. fs orab, ———(:b; = (2{']2:) =64 -4
3. £ o, ' :
4. fhﬂ ﬂr.gib] -
) 2 2
5. : or oy (CLO N TL) R >C
o or 64 cD 035
6. fi. or eyd; - -
7. £, orgi'd, - .
2 2
- ) @49
8 s or ) = Al 143 — 4
._ " " EF 085
. ' f&m"tfl:"' : -
10. :Q,. oty . A

Example 3.7

In the roggle wmeechanism
shown in Fig. 3.12(a), the
crank OA rotates ot 216 rpm
‘tounter-clockiise

at the rate of 60 rads’ For ﬁe%ﬁm

configuration, determine

(@) velocity of slider D and the angular velocity

of link BD

(B) acceleration of slider D and the m@:dar

acceleration of link BE .

2rx210

Solution v, = x (0.2 =44 m/s

60
Complete the velocity diagram as follows

[Fig. 3.12(b)}:
* Take the vector oa representing v,,.
* Draw lines ab 1AB through a and gb



1 OB through q, the intersection locates the
point b.
¢ Draw the line bd LBD through b and a
horizontal line through q or g to represent the
line of motion of the slider D. The intersection
of the two lines locates the point d.
Velocity of slider D = gd = 2,34 m/s
Angular velocity of BD = bd/BD = 3.16/ 0.5 =
6.32 rad/s.
Set the following vector tabie (Table 8):
For the acceleration diagram, adopt the following
steps:
(i) Take the pole point o, or ¢, [Fig. 3.12(c)].
(ii) Starting from o,, take the first vector 0,a,. To
the first vector, add the second vector. Thus,

the total acceleration 0,a, of 4 relative to O
is obtained.

(i) Take the third vector and place its tail at q,

:eg

Acceleration Analysis i

and through its head draw a perpendicular
line to have the fourth vector.

(iv) Take the fifth vector and place its tail at a,.
Through its head draw a perpendicular line
to add the sixth vector,

(v) The intersection of lines of the fourth and
sixth vectors locates the point b,.

(vi) Take the seventh vector and put its tait at b,.
Through its head, draw a perpendicular line
to add the eighth vector.

{vii) For the ninth vector, draw a line through g,
parallel to the slider motion.

{viii) The intersection of lines of the eighth and
ninth vectors locates the point d,.

Acceleration of slider D = g,d, =16.4 m/s?

Angular acceleration of BD = bd /BD =
5.46/0.5 = 109.2 rad/s”.

SN Vsctor Magnitude (m/s*) ~ Birection Sense
1. f, orom, ("_")2_:@_2_:96_3 fIIOz-i'._ ) - 0
. o4 02
2 fhoraga  axO4=60x02=12 Lo4 -
3. -ffq\Orqlbq' @y 639 =183 [18Q -0
' B0 o3 It
4. £, or bqf:l - LBO -
5. 5, orne, @O 54y _ 5.93 || 4B - 4
: . AB 04
6. fia OT 2,8, - 1LAB ;
T oy ﬁ’%‘g - (361:)2 =20 . | lw | B
8 fl, orbyd, : L 8D :
9, fft or g,d, - | | to slider motion -
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Example 3.8° An Andrew variable-stroke For the tinkage OACB(Q),
' engine mechanism is shown f,vf,=f,+f o £, +0, = +1,
in Fig. 3.13(a). The crank OA o,a,ta; ¢, =q; b +bc
. rotates at 100 rpm. Find the Links AC and BC each have two components,
(i} linear acceleration of the slider at D £, + 15+ = fo + i + i
(i} angular acceleration of the links AC, BC o 0,8, +8 ¢t ¢=g; b b, eyt eye

and CD. .
: Sct the following vector table (Table 9).

Draw the acceleration diagram as follows:

(a} Erom the pole point o, take the first vector
and add the second vector to it as shown in
Fig. 3.13 (c).

(b) Through the head ¢, of the second vector,
draw a line L to AC for the third vector.

(c) From g, (or o), take the fourth vector and
add the fifth vector to it

(d} Through the head ¢, of the fifth vector, draw
a line L to BC for the sixth vector.
The intersection of the lines drawn in steps
(b} and {d) locates the point ¢,.

Now,

£, =f,+f

o OF fdg = fm + fdc

Since f,, has two components,

fdg = fco + f(‘!:c + rc:c

or g, d;=o0,¢,+c;d +d, d

Set the following vector table (Table 10).

From ¢, draw the second vector and draw a line L
to CD through the head of the second vector. Draw
a line parallei to the tine of motion of the slider
through g,. Thus, the point d, is located.

() fq=0d, =10,65 /s’

f, ore,ey 264

(i) O = C " 0a8s =142.7 rad/s”
Fig. 3.11 :
e 1% clockwise
fi, ore, e 885
. 27 %100 _fporene _ 2
Solution v, = T x 0.09 = 0.94 m/s Ope BC 0.185 M
Complete the velocity diagram as shown in Fig. counter-clockwise
3.13(b). The procedure is cxplained in Exarnple 2.1 f ord. d 112
Write the acceleration vector equation noting that o,y = % e L= 2 46.7 rad/s’

the cranks 04 and OB rotate at different uniform D 0.24
speeds. clockwise
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ETuble 9
SN Vector Magnitude (m/s2) Direction Sense
2 94,2
1. f,oro a (—0‘1:(09 ) =987 |04 -0
oA 0.09
2 2
2. fo ora, c, (@c)y. = 0381y =355 | 4C -4
AC 0.185
3. f;, orc,e, - 14C -
4. f,,q orqb, (ib_)_zg'.ol:gzg |1 OB -0
OB  0.045
Y 012y
5. {5, or bye, by _ 012 =0.078 i BC - B
BC 0.185 _
6. fi 0T yc, - LBC -
SN Vector Magnitude Direction Sense
1 fooroge Already drawn - : -
C d 2 2
2 fg ore; d, € 00" g (1cD >C
3, £ ord, d b 0.4
de T Te Th . 1LCD _
4 fo 0rg; dy . }| to motion of B -

- CORIOLIS ACCELERATION COMPONENT

It is seen that the acceleration of 2 moving point relative to a fixed body (fixed coordinate system) may have
two components of acceleration; the centripetal and the tangential. However, in some cases, the point may
have its motion relative to a moving body (moving coordinate) system, for example, motion of a slider on a
rotating link. The following analysis is made to investi gate the acceleration at that point.
Let a link AR rotate about a fixed point A on it (Fig. 3.14). Pisa point on a slider on the link.
At any given instant,
Let ®=angular velocity of the link
o = angular acceleration of the link
v = linear velocity of the slider on the link
J= linear acceleration of the slider on the link
r = radial distance of point P on the slider
In a short interval of time &, let 86 be the angular displacement of the link and dr, the radial displacement
of the slider in the outward direction.
After the short interval of time &, let
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@ =+ af = angular velocity of the link
v'=v+ /& = linear velocity of the slider on the link
r’=r+&r = radial distance of the slider

Acceleration of P Parallel to AR

Initial velocity of P along AR = v =y,
Final velocity of P along AR = v’ coslgﬂ — wr sindb
Change of velocity along AR = (v’ cosd8 — @' r’sindf) — v

Acceleration of P aleng AR Pon E
v+ f81)c0s 68 — (w + adt)(r + Sr)sin 80 -v slider l L
- 5t Qon AR 3
In the limit, as & = 0 &
cosd@ — | and sind8@ — 68 @

de

Acceleration of P along AR = f—©r—~

Il

Acc. of slider-centripetal. acc.

This is the acceleration of P along AR in the radially cutward
direction. f will be negative if the slider has deceleration while
moving in the outward direction or has acceleration while moving
in the inward direction.

Acceleration of P Perpendicular to AR

Initial velocity of P L to AR=w
Final velocity of P L to AR = V' 5ind@ +f+’ cosdt
Change of velocity 1 to AR = (v'sind8 +@/r'cosdd) —wr
Acceleration of P L to AR
(v + fBt)cos 88 — (w + adt)(r + &r)cos 68 — wr

In the limit, as 1 — 0
cos 86 — 1 and sin 860 — 89

i v ﬁ + é‘- +ra
Acceleration of P L to AR = i a7

=v@+ v +ra=2av +ra
= 2@v + tangential acc.
This is the acceleration of P perpendicular to AR. The component 2ex vis known as the Coriolis acceleration
component. 1t is positive if both e and v are either positive or negative.
Thus, the coriolis component is positive if the
e link AR rotates clockwise and the slider moves radially outwards
e link rofates counter-clockwise and the slider moves radially inwards.
Otherwise, the Coriolis component will be negative.
These observations can be summarised into the following rule:
The direction of the Coriolis acceleration compoenent is obtained by rotating the radial velocity vector v
through 90° in the direction of rotation of the link.
Let O be a point on the link AR immediately beneath the point P at the instant. Then
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acc. of P = acceleration of P || 1o AR + acceleration of P L 10 AR
fou= (f— ¥+ QRov+ra)
=f+(ra— ' r)t20v
= acc. of P rel. to O + acc. of @ rel. to A + Coriolis acceleration component
=f’m + -;l'-'l + fer 3.4

In the above equation, /7, is the acceleration which an observer stationed on link AR woutd observe for
the slider.

In Fig. 3.5¢a), the acceleration of the point & relative to the link AD (the acceleration 1o be reported by a
person stationed on the link 4D) does not involve the Coriolis companent though the link CD has angular
motion since G is a fixed point on the link C72. Now in case it is desired to have the acceleration of G relative
to the link BC (the acceleration 1o be reported by a person stationed on the link BC). the Coriolis component
of acceleration is involved because now relative to the link BC, G is a moving point and the link BC also has
angular velocity. (See Example 3.16).

Remember that Coriolis component exists only if there are two coincident points which have

» linear relative velocity of sliding, and
e angular motion about fixed finite centres of rotation.

Sometimes for the sake of simplicity, it is convenient to associate the Coriolis acceleration component /<7

with /7, and writing the equation in the form.

Joi=Joq * o
oa=Log S (3.5)

This makes solving problems quite easy.

where

36 CRANK AND SLOTTED-LEVER MECHANISM

The configuration and the velocity diagrams of a slotted-lever mechanism have been shown in Figs 3.15(a)
and (b) respectively. The crank OP rotates at uniform angular velocity of @ radis clockwise.

P
A
v
— S Voo ap
P an slider TTE g r
Qon AR 0 G Vsr
o, a,
Vg 8

()
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Writing the vector cquation.

f:ua = fm + fr,ru or rq{) = fqp + tpn
Any of these equations can be solved graphically. Both will tead to the same acceleration diagram except

for the direction of the vectors f,, and fo

Considering the first equation,

1::1(.' = l,m,r + fr\ra or fpu = fqu + qu
= .ftl;:l + f{:a + f;;q + /;(x:r
or O =0t q g Pyt Py Py

Set the following vector table (Table 11):
The direction is obtained by rotating the vector Vo
in the present case).
Construct the acceleration diagram as follows [Fig. 3.15(c)]:
L. Take the first vector f,, which is compietely known.
2. Take the second vector from the point a, (or 0,). This vector is also completely known.
3. Only the direction of the third vector £, is known. Draw a line | to AQ through the head q, of the
second vector.

4, As the head of the third vector is not available, the fourth vector cannot be added to it

Take the last vector fny which is completely known. Place this vector in the proper direction and
sense so that p; becomes the head of the vector. In Fig. 3.15(d), P, cannot li¢ on the right side ot p,
because then the vector would become p, P, and not p, p;.

5. For the fourth vector, draw a line parailel to AR through the point p, of the fifth vector.
The intersection of this line with the line drawn in the step 3 locates the point qr
Total acc. of Prel. to Q, f=apy
Total acc. of O rei. to 4, f,. =2 q,

The acceleration of R relative to A is given on &, q, produced such that

(or qp) through 90° in the direction of @, (clockwise

W _ AR
aq  AQ
: Table 11°;

SN Vector Magnitude Direction Sense
1. £, 0T 04 P4 wx OP It OP -0
2
2, f,, ora q, (2q) 1AQ SA

40 _
3. T 0rq, q - L AQor a,lq‘ -
4. fpy Oy Py - IHAR -
5. £, or P, P Coriolis component* 1 AR Refer*

* foq =20V, (e =angular vel. of AR) = z(%}m
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Note that in the present case, the sliding acceleration a, q, is in the opposite direction to the sliding velocity

qp. This signifies that the slider is decclerating.
Also,

f.\'a = f“' + rf'f.l'
rsg = fra + £,
=f, +f +1,

Eisi=artrs. +s.s

This equation can be solved as usual.
Total ace. of S relative to R, f,=r;s
Acceleration of S =g, s, ora; s, or o, 5,

The direction of g;s, is opposite to the direction of motion of the slider § indicating that the slider is

decelerating.

Figure 3.16(a) shows a slider
moving outwards on a rod
with a velocity of 4 m/s when
its distance from the point
O is 1.5 m. At this instant, the velocity of the
slider is increasing at a rate of 10 m/s°. The
rod has an angular velocity of 6 rad’s counter-
clockwise about O and an angular acceleration
of 20 radis? clockwise. Determine the absolute
acceleration of the slider.

Example 3.9

Solution
Writing the acceleration vector equation,

- - £ 1
£ =By T 1g0 =Tt 1y = ft:o +Hg t f;q + f;;

or 0Py T0,Q, F 4, q; Y qPq T P i

Set the following vector table (Table 12):

Figure 3.16(b) shows how to obtain the direction
of the coriolis component. The velocity vector of the
slider is rotated through 90° in the angular direction
of the rod.

Draw the acceleration diagram as follows
[Fig. 3.16(¢)]:

Sradis 20 mis2 —= 10 mis?

—=4 mfs s
og ) 3 g T e 90
Pan
15m slider Vo
Qon OR
(a) (b)
Py
o W} o,
30 48
q P
"g ¢
{c)
Fig. 3.16

1. From the pole point o,, take the first vector

0,4,
2. Add to it the second vector q 4,

Table 123

i SNAi Vector Magnitude (m/s?) Direction Sense
1. f5, 0T 0, q, o r=6"x15=54 1 OR —
2. fae OFQ, G a,, x 0Q=20x15=30 1 OR )
3. foq OTQ; Py 10 [1 OR -
4, foq OTPg Py 20. v, =2x6x4=48 1 OR
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3. Add the third vector to the second vector.

4. To add the fourth vector, place the tail of the
fourth vector at the heud of the third vector
and the final point p, is located.

5. Joino, p.

On measurement, o, p, = 47.5 m/s?
or by calculation from the acceleration
diagram

= J(54—10)2 + (48— 30§ = 47.5 m/s?

Example 3.10  Fig. 3.17(a} shows the link
mechanism of a quick-return
mechanism of the slotted-lever
type, the various dimensions
of which are

o4 = 400 mm, OF = 200 mm, AR = 700 mm,
RS = 300 mm.

For the configuration shown, determine the
acceleration of the cutting tool at S and the
angular acceleration of the link RS. The crank
OF rotates at 210 rpm.

Aa
350
P on slider
Qon AR fo)
0,849
400

Solution Thevelocity diagramhasbeen reproduced
in Fig. 3.17(b) from Fig, 2.21.
2r x 210

Ve 0T 0P =@ .O0P = ——————x02=22x02
60
=4.4 m/s
Writing the acceleration vector equation,
qr.’l = rql + rp(}
= fpu

or 31 ‘h =0, P1+P1‘I1

or f‘;‘ + f;a = f;o + f;; + f;p

or al‘:lal-|-qa|(1]=oll:'l+plqp+q|:|ql

Set the tollowing vector table (Table 13) shown
in the following page.

Direction of f,, is obtained by rotating Vo
through 90° in the direction of angular movement
of link {4 as shown in Fig. 3.17(c) (clockwise in
this case). Draw the acceleration diagram as follows
{Fig. 3.17(d)]:

1. From the pole point o,, take the first vector
O Py

2. Add to it the second vector pyq,,

3. Add the third vector to the second vector.
For the fourth vector, draw a line parallel to
4. through the head g, of the third vector.

4. From the pole point a, or e, take the fifth
vector and for the sixth vector, draw a line
perpendicular to AQ through the head q, of
the fifth vector.

This way the point q, is located.
5. Join g, and ay and extend to r, such that

an _ AR
a,q; AQ
Writing the vector equation,
f.!'t) = f.U' +~ fl’\’J
Or f\k‘ = fm + 'j\']'
= f!’a + f.:? + f.:"!'

or &5 =0 I hr s +s. sy
f iz already available on the acceleration

Ll

diagram. fis honzontd]

- 1.41)y"
R A L1 P
RS 0.3
Complete the vector diagram as usual.
Acceleration of the cutting tool, f, = o, s,
=32.8 mis
o, = M 137 52.3 rad/s clockwise
' kS 0.3
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“Fable 133

SN Vector Magnitade (m/s?) Direction Sense

1. fps OT 03 Py op) G4 _ 96.8 HoP -0
ap 0.2

2. g OTP1 Q, 2 @, v = 355* 1AQ Refer *

3. T or g, g - I AQ -

' gy _ (326

4, f:, ora; 4, .__(_l_ =777 _24 : [ AQ S A
40 052

5. fou 019, 4 - LAQ -

4

L Vr
Mo = 20,5V, =2 R; Vap = 2X 0— X 2.85 =35.5 m/s?

‘Noted Incasethe problemistobe worked out without
writing the vector equation and if the Coriolis
acceleration companent fouis considered

instead of fgg , then note that

s the magnitude of the Coriolis component
remains the same.

» in order to find the direction, the velocity vector
Vgp is to be rotated through 90° as shown in
Fig. 3.17¢. The direction of fg, is found to
be opposite to fpc.;. Now, one will be tempted
to place this vector towards rightof p, in the
acceleration diagram. However, if that is done,
the vecwr would be read as p,q,, which means
fgp and not 5. Thus, again the vector {7 has
10 be placed at the same place, 1., on the left
of p; which means the acceleration diagram
obtained will be the same.

Example 311  Figure 3.18{a) shows the
Scoteh  yoke - mwchanism,
At the instant shown in the
figure, the crank OP has an
angslar velocity of 10 rad/s
and an angular acewleration of ‘30 rad/s’.
Determine the accelemation of the stider P in the
guideandthe horisontalacceleratioh of the guide.

Fig. 3.18.

Sofution v, =10x02=2m/s

To draw the velocity diagram, take a coincident
point O just beneath P on the guide link. Take
another point C on the guide link. Now, proceed as
follows [Fig. 3.18(b)}:
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1. Take the vector op equal to 2 m/s to some
suitable scale.

2, The velocity of { relative to P is along the
guide path. Therefore, draw a line parallel
te this path (vertical) through p to locate the
point q.

3. The velocity of C relative to ¢ is along
the guide path at & or is horizontal. Thus,
draw a horizontal line through g to locate
point ¢.

4. Now, ¢ and C are two fixed points on the
same link and the distance between them
does not vary. Therefore, the points q and ¢
in the velocity diagram coincide. Thus, the
intersection of lines drawn in steps 2 and 3
locates points q or ¢.

©py 27
ar 02

fpo OTPo By =30 x 0.2 = 6 m/s?

Draw acceleration diagram as follows [Fig.

Now, fpo Or oy p, = = 20m/s?

318(0)):
1. First take the centripetal accelcration
component fy, ore,p, and add the

tangential compoenent f;a or p.py it

2. Now, the linear acceleration of sliding of O
relative to P is vertical. Thus, draw a line to
locate point q; on that.

3. Draw g horizontal line through g, to locate
the point ¢, on that.

4. As there is zero velocity between @ and
P, they are to be the coinciding points in
the acceleration diagram also. Thus, the
intersection of lines drawn in steps 2 and 3
locates the point q, or ¢,. ]
Acceleration of slider P = Tpa OF P
=4.75 m/s?
and horizontal acceleration
= I Or gy € =20.5 my/s?

[t is to be noted that in this example, Q and P are
two coinctdent points, but still there is no Coriolis
component. This is because the link (guide) on
which the slider is moving does not have any angular
motion and thus «w for that is zero.

of guide

Example 3.12 4 Whitworth quick-return
mechanism has been shown in
Fig 3.19¢a). Thedimensionsof
the links are OP (crank) = 240
mm, O4 =150 mm, AR=165 mm and RS = 430
mm. The crank OP has an angular velocity
of 2.5 radis and an angular deceleration of
20 rad/s’ at the instant. Determine the

(i} acceleration of the slider §

(i) angular acceleration of links AR and RS

(b)

iFig, 3.18
Solution Thevelocity diagram hasheenreproduced
in Figs 3.19(b} from Fig. 2.25(b).
Writing the acceleration vector equation,
Ll S
Both the equattons lead to the same acceleration

diagram except that the direction sense of the
acceleration vectors between P and (2 are reversed.

oo =Tpt Ly or

Taking the first one,
foo =Tt 1,
foa = foo T 14
or A Q=P tpq

Each has two components,

4 | S L4 Lr
faa +4a = f;u +Hpe +igp + f;p



or

4 QY Q=0 P+ p, Py Py q, +q, q,

Set the following vector table (Table 14):

The

. . oLr ., . -
direction of /,, is obtained by rotating \”

through 90° in the direction of angular movement of

the link

Q4 or BA (counter-clockwise in this case) Draw

Acecleration Analysis

105,
(rs)”  (0.12)°

L.
f‘il'— -

RS 0.43

Complete the vector diagram as usual,

fi=0,5,=0.39 m/s?

= 0.033 m/s?

the acccleration diagram as follows [Fig. 3.19( o)]:

1. From the pole point o[, take the first vector
and add to it the second vector.

2. Add the third vector to the second vector.
For the fourth vector, draw a line parallel to
AQ, through the head q,, of the third vector.

3. From the pole point a, or o,, take the fifth
vector and for the sixth vector, draw a line
perpendicular to AQ through the head q, of
the fifth vector.

This way the point q, is located.
4. Join q, and a, and extend to ry such that
an _ AR
hq o AQ
Writing the vector equaticn,
r.\'(l = fsr + rro
01' f\g = fm + fj‘?’
=L, S+

fl::a or qu q] 0‘57
Xy, = aqu = =
04 0.365
= 1.56 rad/s” clockwise
f,ors;s, 024
a}_\ =t - 8 Te _ T
RS .43

= 0.558 rad/s* clockwise
Example 3.13  One cylinder of a rotary engine
is shown in the configuration
diugram shown in Fig. 3.20(a).
OA is the fixed crank, 200 mm
long. OP is the connecting rod and is 520 mm
long. The line of stroke is along AR and at the
instant is inclined at 30° to the vertical. The body
of the engine consisting of cylinders rotates at a
uniform speed of 400 rpm about the fixed centre
A. Determine the

or g8, =0, +rs, +5. 5,
f,, is already available on the acceleration
diagram. f, is horizontal.

le 14%

(i) acceleration of piston (slider) inside the
cviinder

(if) angular acceleration of the connecting rod

SN Vector Magnitude (m/s?) Direction Sense
1. , oro, p Eg’?)::%%—]j ' opP -0
2. foo O P, By Oop X OP =20 x0.24 = 0.48 L OPorilop -0
3. fop OTP1 G, 2 @, v, =0.38* 1AQ Refer *
4, fg org, q, - I AQ -

5. £ oraq, i—‘:;i - ‘053’255)2 - 0.93 1l AQ >A
6.  f,orq, q - LAQ -

oo = 20p,v,, =2 gj; (@ = 0g) = 2% 28 0415 (v, = aq = 0.585) = 0.38 m/s?

0.365
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P on shider
Qan AR

(b)

Solution Let (2 be a point on AR beneath the point P.

2N
=

v =
“ 60
The velocity vector equation is

b = +
Vpa = Vpg ¥ Vga OF Vo= Vop ¥ Vo

Taking the first one,

= 2EXA00 6 68 = 28.5ms

= +
Voo = Voa T Vyp

or op = aq + qp
Take the vector v

4o 0 @ convenient scale [Fig.

v, is il to AR, draw a line || to AR through q.
¥po 18 L to OP, draw ap, a line £ to OP through o.
The intersection locates the point p.
Similarly, writing the acceleration vector equation,
f.=f, +1,

or foo =Lt ty,
or L TRk N PRt P )

Expanding, 5, +,, = £, +T +1,,

of O Pt PP T g TPyt P Py

Set the vector table (Table 15):

The direction of fpg is obtained by rotating Yoy
through 90° in the direction of @, (clockwise).
Draw the vector diagram as follows:

1. Take the first vector from the pole point a; or
o, [Fig. 3.20(c}].
2. Add the second vector to the first vector.
3. Through the head of the second vector, draw
a line parallel to AQ for the third vector.
4. Take the fourth vector from the pole point 0,.
5. Through the head of the fourth vector, draw a
line perpendicular to OP for the fifth vector.
The intersection of the lines drawn in steps
(3) and (5) locates the point p,_
{i) Acceleration of the slider inside the cylinder
£, orpg Py = 390 m/s’
(1) Angular acceleration of the connecting rod
£, orppy 150

o, = = 288.5 rad/s’
oP 0.52

3.20(b)]. counter-clockwise
“Tuble 157
SN Yector Magnitude (m/s?) Direction Sense
2 2
L. T 0T M4, &=(28'5) =1194 f4g - — A
A0 0.68
2. f;; or q; Py 486% 1 AQ -
3. £ OT Py P1 - 40 -
. 2
4. £, or oy p, ©p)y _ 293y _ (651 I OP >0
: OP 0.52
5. fls O Py Py Lop -

Ve 285
Ty =20,V =2 qp =2 x = x 5.8 = 486 m/s?

04 0.68



Example 3.14 In the swiveling-joint mechan-
ism shown in Fig. 3.21¢(a), AB
is the driving crank rotating at
300 rpm clockwise. The lengths
aof the various links are

AD = 650 mm, AB = 100 mm, BC = 800 mm,
DC = 250 mm, BE = CE, EF = 400 mm, OF =
240 mm, FS = 400 mm

For the given configuration of the mechanism,
determine the acceleration of sliding of the link

Acceleration Analysis 1@

Solution

_ 2rx300
#o 60
=314 x01=314m/s
The velocity diagram is reproduced in Fig. 3.21(b)
from Example 2.18. For the acceleration diagram,
first complete the acccleration diagram for the four-

link mechanism ABCD {Fig. 3.21(c)] as usual with
the help of the following equation and table:

=314 rad/s

EF in the trunmion. f, =T, +1
fcd = fba + fth
foy + 0 =By + 05 + 13

or  dyegtege;=a b +b et

Set the vector table (Table 16) as shown.
Now, locate the point e, on the vector by¢, at the
mid point.
Acceleration of (@ relative to E has two
components:
2
o oce _ Yo (93)
1) rqe =TT
oF 016
(ii) fc:e is unknown in magnitude, and s
direction is L QF.
From the point e, take the vector for f.:e parallel

to QF and draw a line | to it for the vector f:e .
Now, the Coriolis component can be calculated,

=238 m/s?, || OF

L
*f‘: = Zmevn ZZivo
& qe g QE q
SN Vector Magnitude (m/s?) Direction Sense
2 2
1, fi, ora; b, @@b) (.14) - 98.6 | AB Ny
AB 0.1 '
2. foo orby ¢ ®e) _ Gy 12.6 | BC -8
BC
3. £, ore, ¢ - 1 BC -
2 2
4, fea Ord, ¢4 (dey = .18 =40.5 i DC —-D
DC 0.25
5. £l ore, e L pC .
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1.95
:ZXRXLSS =451 m/s?

w,, is found to be counter-clockwise,

The direction for Coriolis component is taken by
rotating v, through 90° in the direction of angular
movement of the link QF (counter-clockwise in this
case). The acceleration diagram is completed as usual.

Acceleration of sliding of link £F in the trunnion
= q,q,= 4.86 m/s?

This shows that it is downwards or opposite to
the velocity, Thus, it is deceleration,

Example 315 In the pump mechanism
shown in Fig. 3.22(a), OA =
320 nim, AC = 680 mm and
OQ = 650 mm. For the given
configuration, determine

(i) linear (sliding) acceleration of slider C

relative to cvlinder walls
(ii} angular acceleration of the piston rod

Solution  The velocity diagramhasbeenreproduced
in Fig. 3.22(b) from Example 2.15.

The problem can be solved by cither of the
two methods discussed for velocity diagram in
Example 2.15.

Writing the acceleration vector equation for the
latter configuration,

=1, +f,jq +f, +15

or - opa;=q; by +b b, +b ay+ay,a,

Set the vector table (Table 17)
The direction of fg;, is obtained by rotating v,
through 90° in the direction of 0y, {clockwise).
Draw the acceleration diagram as given below:
1. Take the first vector [Fig. 3.22(c)].
2. From point q; (pole point), take the second

Fog = T + Ty vector and through the head of it, draw a line
perpendicular to (8 for the third vector,
ot fuu = fh(,r * fuh
(Table 17
SN Vector Magnitude {(m/s?) Direction Sense
2 2
1. f,, 01 0, 4 ay _©4) H oA e
04 032
2 f,fq orq, b, Q_ﬂ:ﬂzzﬁ‘g ' QB -0
BO 085
3. fa, orb, b, - L QB .
4. £, orb, f, - 11 QB -
5, s ora, a, 47.1* LQA
4.77

i

qu
ab = Zqu"‘ab =2 HBT) ba

{0, = co,,q) = 2><T85x4.2:471 m/s”



3. Take the fifth vector from the point a; such
that the vector is in the proper dir¢ction and
sense.

4. For the fourth vector, draw a line paraltc! to
OB through the tail a, of the fifth vector.

The intersection of the lines drawn in steps (2)
and (4) locates point b,

Let I be a point on (28 beneath the point C.

Acce. of Crel. to cylinder walls

= fia = fop = T2mis"

Writing the vector equation,
fcq = frd * qu

= qu + fcd

= qur + :a’ + ch;‘

or q ¢ =q, 4, +d ¢yt e, d,

£, =1 =72 m/s® parallel to OB.

d =20 Vg = 20,V = fop
G4, _ Qb
qb, 0B

To the vector f;, add the vector f; and then
cr
od -

Thus, the point ¢, is located.

Join a, to ¢,.

a,c, represents total acceleration of C relative to
A. This has two components.

f, LtoCA=a,¢,

Locate point d, on g, b, such that

and £ toCAd=¢,¢)
!
a,, = Lo o 18 20,50 adss’
C4 0.68

counter-clockwise

The dimensions of a four-link

Example 3.16
mechanism are as under {Fig,
3.23(a)}:

AB = 35 mm, BC = 40 mm,

CD = 45 mm and AD = 70 mm. At the instant
when LDAB= 75°, the link AB rotates with an
angular velocity of 10 rad/s in the counter-
clockwise direction. Given the coincident points
P attached to the link CD and Q attached to the
link BC such that BQ = 30 mm and CQ = 20
mm. Determine the acceleration of P relative to
Q (or the link BC).

Acceleration Analysis 10@%

¥
s A

PonCD ~_
Qon BC

“Fig, 3.23.

Solution v, =10 x0.035 = (1.35 m/s

Complete the velocity diagram as shown in
Fig. 3.23(b). Point ¢ can be located by drawing
the velocity image of the triangle BC@ and P by
drawing the velocity image of the triangle DCP.

For acceleration diagram, we have,

Acc. of Crel. to 4 = Acc. of Crel. to B + Acc. of
Brel to 4

fcu = f('.fs + fha
or f('u‘ = fbu + fc'b
ar dlc]=a1b|+b!cl

Writing in terms of components,

- fog +00g = f5o + T + Ty

or d,ey+ecgey=a;b,+b, ¢, +ep 04

Set the following vector table (Table 18):

Draw the acceleration diagram abcd,
following the sieps of Example 3.1. Locate the
point p; by drawing the acceleration image of the
triangle 2CP on the vector ¢,d; and q; by drawing
the acceleration image of the triangle BCQ on the
vector bye, [Fig.3.23(c)]

Now,

f,,=Acc.of Prel 1o @+ Acc.of Qrel o4 +
Coriolis acceleration component

=yt T

{n the above equation f,, (aypy) and ., (a,q,)
are known and it is required to find f,, Therefore,
first we have to find f 7.
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Yector Magnitude (m/s?) Direction Sense
) 2
1. fg, ora; by (_’!'_’)_=M_:3_5 1 AB !
AB 0.035
2. 5 ordb, ¢, (be)” _ (0.257)" _y s | 8C -8B
BC .04
3. £ ore, ¢ - L BC .
2 2
A £, ord, (dey _ (0.345)° _, (o 1oc >D
DC 0.045
a. l:‘ orey ¢ - 1 DbC -
T =2, by rotating the vector v, in the direction of angular
y be Tpg velocity of BC which is clockwise in this case.
= -ﬁ"—qp Jpq 18 Tepresented by vector g, p, = 438 m/s’
BC This is the acceleration of P relative to O (or the
= 2% 0.257 x0.28 = 3.6 m/s? link BC), i.e, the acceleration which an observer
0.04

. stationed on link BC would report as the acceleration
Its direction is given by as shown in Fig. 3.23(d) 41 the peint P

/ALGEBRAIC METHODS

R

Let us consider the same system of 2 plane moving body having its motion relative to a fixed coordinate
system xyz as was taken in Section 2.11. A moving coordinate system x’y’z’ is attached to this moving body
as before (Fig. 3.24). Coordinates of the origin 4 of the moving system are known relative to the absolute
reference system and the moving system has an angular velocity w also.

To find the acceleration of P, a procedure similar to the one adopted for velocity is used here also.

Vector Approach

Equation 2.7 is
v,=v, +v&+ @ xr
Differentiating it to obtain the acceleration of P,

V=V +vR rdxr+oxr

where @ is the angular acceleration of rotation of the moving
system.

and v® is obtained by differentiating (X'l +y'm+2'n) ,

ie.,
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G+ 3 m+5n)+ &1+ j'm + 2'1)
G+ P'm+ Z'n) + o (¢ + ’m + z'n)
=fR + pXvR

l

‘}R

wxi=mx—dd; (xI+ y'm+ z'n)

=ox(F1+y'm+2n)+E i+ y'm+2’8)
=ox VR +x(@xr)
But vy =1, and v, =1,
Therefore,
fo =+ +oxv?)+oxr+[oxy® +Ox(®xr)]

=fb+fR+2m><v“+(i:xr+a)><(mxr) (i)
Now absolute acceleration of 0, the coincident point may be written as
fqa = (0] + fba
= fba + qul

d
=f +—(wxr
b dt( )

=f, tOXr+ox(@xr)
Thus equation (i) reduces to
p = fpn + 5 + 20XvE

R rC
=M +17 +f

where f_, is the absolute acceleration of Q. fR is the acceleration of P relative to the moving system or relative
to O, and f€ is known as the Coriolis component of acceleration.
The above equation may be written as
fo= L +1, + K
b=+, +F (3.6)
Acc. of Prel. 1o 4= Acc. of Prel. to @ + Acc. of Q rel. 1o 4 + Coriolis Acc.

Use of Complex Numbers

Equation 2.8 is
v=re® +irg
Differentiating it with respect to time,
f=(% +# 8%y + (irf €° + 78 ® + 216 e’-s)
= (4" - r6%)e® 4 i(r6 + 276)e® (3.7)
The first part of this equation indicates the radial or centripetal acceleration and the second part, the
Iransverse acceleration in polar coordinates.
f=¢-wnr+ ra+2mv)
=fr{ra-afr)+ 2av (3.8)
=Acc. of Prel. to O + Acc. of Q rel. to 4 + Coriolis acceleration component i.e., the same equation as
before.

@



‘ '38 KLEIN'S CONSTRUCTION
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In Klein's construction, the velocity and the acceleration diagrams are made on the configuration diagram
itself, The line that represents the crank in the configuration diagram also represents the velocity and the
acceleration of its moving end in the velocity and the acceleration diagrams respectively. For a slider-crank
mechanism, the procedure to make the Klein's construction is described below.

Slider-Crank Mechanism

In Fig. 3.25, OAB represents the contiguration
of a slider-crank mechanism. lts velocity and
acceleration diagrams are as shown in Figs.
3.4(b) and (c). Let # be the length of the crank
OA.

Velocity Diagram For velocity diagram, let »
represent v, to some scate. Then for the velocity
diagram, length oa = wr= OA.
From this, the scale for the velocity diagram
is known. X
Produce B4 and draw a linc perpendicular to %!‘13 3.25
OB through O. The intersection of the two lines ’
Jocates the point b. the figure, oab is the velocity diagram which is similar to the velocity diagram of Fig.
3.4(b) rotated through 907 in a direction opposite to that of the crank.

Acceleration Diagram  For acceleration diagram, let r represent Lo
o,a,=w r =04

This provides the scaie for the acceleration diagram.
Make the following consiruction:
1. Draw a circle with ab as the radius and a as the centre.
2. Draw another circle with 48 as diameter.
3. Join the points of intersections C and D of the two circles. Let it meet OB at b and AB at E.
Then o,a,b,b, is the required accelcration diagram which is similar to the acceleration diagram of
Fig. 3.4(c) rotated through 180°.
The proof is as follows:
Join AC and BC.
AEC and ABC arc two right-angled triangles in which the angle C48 is common. Therefore, the triangles
are similar.

AE  AC AC)Y
AE_AC g AO°

AC  AB 48 or  ab=—rr=/u

AB

Thus, this acceleration diagram has all the sides parallel to that of acceleration diagram of Fig. 3.4(¢c) und
also has two sides e,a, and a,b, representing the corresponding magnitudes of the acceleration. Thus, the
two diagrams arc similar.
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¥ VELOCITY AND ACCELERATION FROM DISPLACEMENT-TIME CURVE *

s

Sometimes, displacement-time data for a moving point in a mechanism are available and it

is required to find the velocity and acceleration at

graphical differentiation that uses the following rules:
1. Velocity is the derivative of disptacement with respect o time and is proportional to the slope of the
tangent to the displacement-time curve for any instant.

2. Acceleration is the derivative of velocity with respect to time and is proportional to the slope of the
tangent to the velocity—time curve for any instant.

Figure 3.26(a) shows a displacement-time curve of a point in a mechanism. At the point C, LN is the
tangent where the points £ and ¥ are chosen arbitrarily.

Maimum
point
1 5 .
Maximum 125
a N £ point 2
5 . A 7 BNy »
£ { Minimum £ , 155
& | point i R I Q 3
g DA il 10
[a /C & : L1 - A L L 5
A 2
t L:/_‘-__-?_ ,?’ + + + t l
o 1 2 3 45 6 7 8 91w P o
Time Time
() (b}
+ 20
o
h=
[l
2
[+1]
g
<
PN O

Then

various instants. This can be done easily by

(i)

where v, = velocity at € and

k, = displacement scale

k, = time scale

and NM, LM =actual drawing distances

To plot the velocity-time curve, select a convenient point P (known as pole point) as shown in
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Fig. 3.26 (b). Draw a line P7 parallel to LN. Then it can be said that TO is the magnitude of the velocity at
the point C to some scale which can be found as follows.
Let k, = velocity scale

Then
v,= k, TO (i)
From (i} and (ii),
% TO = k, NM
&k TO
or k, PO
ok L
kPO

Thus, the scale of £, is known.
o Alternatively, the velocity scale may be chosen first, and accordingly the point T may be marked for
the velocity v, and then drawing a line parallel 1o LN will locate the pole point .

Select more points on the displacement—time curve and draw tangents to the curve. From the pole point
P, draw lines parallel to these tangents meeting the Y-axis. Project the points obtained on this axis to the
corresponding ordinates. Complete the velocity-time curve using a french curve.

In the same way, the acceleration-time curve can be drawn by taking another pole point P, for that [Fig.
3.26 (c)]. The acceleration scale &, will be given by

k, 1
k= —
' k: PIOI
Note that the derivative is
L. positive if a curve rises and is negative if it falls
2. zero at a maximum or minimum point on a curve

3. numerically maximum (positive or negative) at an inflection point (a point where the curvature
changes on the curve)

0 CENTRE OF CURVATURE

In using the acceleration veclor equations, it is necessary to carcfully identify a point whose centre of
curvature is known so that the radius of curvature of its locus is known which is needed to calculate the
normai component of acceleration. Tt will be interesting and convenient if any arbitrary point is used in
finding this component if its radius of curvature could be calculated. In the following sections, some methods
are presented to find the same.

In a planar motion, when a rigid body moves relative to another, an arbitrary chosen point on the first body
traces a path relative to a coordinate system fixed to the sccond body. For example, if two bodies p and g are
in relative motion then a point 4 on the body p traces a path relative to the coordinate system fixed to the body
g. At any instant, the point 4 may be assumed to move in a curve and thus has a centre of curvature 4" in the
body g. Considering the inversion of this motion, the point A" in the body ¢ also moves in a curve relative
to the body p with its centre of curvature at A. Thus, each point acts as the centre of curvature of the locus



Acceleration Analysis !lag

of the other. In the four-bar linkage of Fig. 3.2(a), 4 on the fixed link | is the centre of curvature of B on the
moving coupler 3. Then considering the inversion, i¢., assuming link 3 to be fixed and releasing the fixed link
1, B on the link 3 is also the centre of curvature of the point 4 on the link 1. The two points are known as the
conjugates of each other. The distance between them is calied the radius of curvature of either locus.

11 HARTMANN CONSTRUCTION

The Hartmann construction is a graphical method to find Centrode normal
the location of the centre of curvature of the locus of a H
point on a moving body. Let there be two bodies having
a relative planar motion between them. Consider two
curvatures of the two actual centrodes (Section 2.16) in
the region near the point of contact at the instant. Let a y
circle with centre (¥ represent the circle corresponding to
the curvature of fixed centrode and (2, the centre of circle
corresponding to the curvature of the moving centrode o0
(Fig. 3.27). For the sake of convenience, the two circles tangent —
may be called the fixed and the moving centrodes. Let )
be the point of contact of the two centrodes which is also
the instantaneous centre. The centrode tangent and the
centrode normal are also shown in the figure.

Let the moving centrode roll on the fixed cenirode with
angular velocity @. Then as [ is also the instantaneous
centre, the velocity of the point O is

Moving
centrode

v, = @0l

As the motion of moving centrode advances, the point %i& 3_%
of contact P moves along with some velocity v. Since at =
any instant, the line joining O with 0" must pass through P, the velocity of P must be given by

_1o
Oor o

v

The velocity of any arbitrary point A on the moving centrode, i.c., a point on the coupler whose conjugate
point is to be found is given by, v, = @w.Af .
To find the conjugate point of the peint 4, the Hartmann construction is as follows:
L. Take a vector representing the velocity v, of the point O by drawing a line perpendicular to O to a
suitable scale. Also, take a vector representing v, the velocity of 4 by taking a line perpendicular to
AT and drawn to the same scale.
2. Draw the velocity vector v to indicale the velocity of the point I by drawing a line parallel to v, and
intersecting with the line joining O” with the end point of the vector v,
Take a component of v parallel to v, Let this vector be called u.
4. Join end points of the vectors v, and u. Then the intersection of this line with Af provides the requisite
conjugate point 4, giving the radius of curvature of the locus of 4 as 44"

g
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gmg - EULER-SAVARY EQUATION

An analytical expression known as the Euler-Savary
derived as follows:

If exis the angle between the centrode tangent and the line AP (Fig. 3.27), thenas v = ——

equation for the location of the conjugate point of 4 is

s

F vO ¥
. ! . ! . Io. .
u=vsin@g=——v, sin@ = - {w.OP)sin g = — ..M O (i)
Q o0
a a4 4" Al
U=—1 =—— (A =—"@m ii
Also, FYACRPYT ( ) P (ii)
From iy and (i 20" o sinoe = AT
rom (i) and (ii), oo ? NPTER
* . OO’
————sing = ——
or ALIA o/l
[ Al 7 ] . or o
Ft——|singg=——+
or ALI4" ALIA’ oLy oLy
[ o1 ) : I
+— psing = — + —
or A" Al o or
I —Llsina-‘—— 1 :
or Al At or 01 (1)
This is known as one form of the Euler—Savary equation. Centrode
This is useful to focate the conjugate point A4” of the point 4 normai
when the radii of curvature of the two centrodes are known.
v M , i } A
or any other point B at an angle B with the centrode ;
tangent whose conjugate point is B’ (Fig. 3.28), the above 9 -
equation may be written as
Moving
I 1 J ) ] 1 centrode
—— ——|sinff=—-
Bl B or 0} Centrode ™. e
tangent
Let this point be a particular point in the moving N
centrode such that it satisfies the equation A f Fixed
| centrode
smf 1] !
Bl oI 01 |
o
This means that the term 1/8’ { is zero which indicates - -
that the point B is such that its conjugate point lies at Fig. 3.28%

mfinity on the line joining B/,

Similarly, for a point 2 on the centrode normal whose co

1

|
= — as angle §is 90° and sin 8is 1.
PO g Anele fis90%and sin f§

njugate point is at infinity on the line /O,
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This alse indicates that PT= Bl/sin . The point £ is known as the inflection pole.

Thus, to find more paints whose conjugate points are at infinity, the equation P/ = Bi/fsin § or Bl =
Pi/sin B must be satisfied. This equation defines a circle whose diameter is IP as shown in Fig. 3.28. The
circle is known as the inflection circle. Each point on this circle has an infinite radius of curvature at the
instant and its conjugate point lies at infinity.

Thus, on the line 47, the point A” intersecting the circle indicates that its conjugate point is at infinity and thus,

singg 1 1

=5 )
41 ol Ol
o oL 11 1 Ad-aAl 1 AT+
From (iii) and (i), "5y = 70 " 70p O T T Ui 4t O 4T aral

or ALAT=A"1AA
AI(A"A— 14) = (A] - 44”4’ 4
or Al A'A— AFLIA= AL A’A— AA”. 4’4
or ALAl = A" AX
2 ’” )

or Al' =A4".44 (3.9)

This is the second form of the Euler—Savary equation and is more useful than the first form as this does
not require knowing the curvatures of the two centrodes. However, it requires drawing the inflection circle

which can easily be drawn.
In applying the above equation, A4 and 44" are to lic on the same side of 4.

Example 3.17 A slider-crank mechanism is
shown in Fig. 3.29%a). The
dimensions are:

OA =20mm, AB =25 mm, AD
= 10 mm and DC = 10 mm.
Draw the inflection circle for the motion of the
coupler and find the instantaneous radius of
curvature of the path of the coupler point C.

Solution Locate the instantaneous centre of [ at
the intersection of 04 and a line perpendicular to
the direction of motion of the slider {Fig. 3.29(b)].
Apart from 1, the point B also lies on the inflection
circle as its centre of curvature is at infinity. One
more point is needed to draw the inflection circle
which can be obtained as follows:

As O is the centre of curvature of
the point A, extend 40 to A” such that

. AIY 267
A" =" =

A0 20
AI=26.7 mm) (Eq. 3.9)

= 35.6 mm (on measurement

Locate 4" as shown in the figure on the same
side of 4 as A”. Thus, A" is a point whose centre of
curvature is at infinity.
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Now draw a circle passing through points 7, B
and 4" by taking right bisectors of /8 and BA” (not
shown in the figure) intersecting at the centre O of
the circle.

Diameter of the inflection circle, /P = 62.5 mm

To find the centre of curvature of the point € on
the coupler, join /C intersecting the inflection circle
at C”. Then C” is a point having centre of curvature

BOBILLIER CONSTRUCTION

This is another graphical method by which inflection circle can
be drawn without requiring the curvatures of the centrodes.

Let A and B be two peints on the moving body which are
not coltinear with / (Fig. 3.30). Let 4" and B’ be their conjugate
points respectively at the instant. Join 4B and 4" B’ and let their .~ -
intersection be at Q. Then the line passing through 7 and Q is R 2
known as the collineation axis. This axis is specific for the two =2
rays A4” and BB’ and for another set of points 4 and B. Even on / a2
these rays, ¢ will have a different location and thus a different

collineation axis.

. : c,o\“e:,c\s
Bobillier theorem It states that the angle subtended by one of the .
rays (AA" or BB') with the centrode tangent is equal to negative of A
the angle subtended by the other ray with the collineation axis,

In Fig. 3.30, the ray A4’ subtends angle & with the centrode

at infinity as this point lies on the inflection circle.
Locate a point on C or its extension such that

2 2
CC = crr 299
cc” 159
Locate C as shown in the figure on the same
side of € as C”. Then C’ is the requisite centre of

curvature of the point C.

=52.9 mm

Normat g

TFangent

&

3 S S T4

tangent and the ray BB subtends the same negative angle with the collineation axis.

Proof

(a)

Normal B

Tangent

(&)
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Let 4 and 4, and B and B’ be the known pairs of conjugate points [Fig. 3.31(a)].

Make the following construction:

Locate the point /, the instantaneous centre of velocity at the intersection of two rays 44" and BB’

Locate the point  at the intersection of rays AB and AR

Join /Q to obtain the collineation axis.

Draw a line parallel to A’B’ intersecting AB at J.

Draw a line paraltel to JQ through J intersecting A4 and BB’ at 4, and B, respectively.

Draw a circle passing through /, 4, and B, (Fig. 3.31b). A convenient way of drawing the circle is by

drawing 4, P1 A4’ and B, P | BB’ intersecting two perpendicular lines at P Now [P is the diameter of the

inflection circle as it subtends a 90° angle at points 4, and B, indicating that 4, and B, are the points in

the sermicircles with diameter IP. Thus, P is the inflection pole. Draw the circle with IP as the diameter.
7. As IP is also the centrode normal, draw the centrode tangent as shown in the figure.

Let @ be the angle which 74, subtends with the centrode tangent. Now, arc I4; is inscribed by the chord
14, which is at an angle o with the centrode tangent and subtends the angle 73,4, at the circumference of
the inflection circle. Therefore, the angle /B, 4, is also equal to . As 4,8, is parallel to PO and 1s intersected
by IB’, the angle /B, 4, is also equal to the angle O/, i.e., equal 1o ct. Thus, the angle subtended by one of
the rays with the centrode tangent is equal 10 the negative of the angle subtended by the other ray with the
collineation axis. Thus the construction satisfies the Bobillier theorem.

Sk

Method to find a conjugate point of another arbitrary point
Let the inflection circle be drawn and the centrode tangent Normal c
and normal be known and it is required to find the conjugate
point of C (Fig. 3.32). The point P is the inflection pole, p
i.e., its conjugate point P lies at infinity and thus the ray
PP is perpendicular to the tangent to the centrodc tangent.
This suggestes that according to the Bobillier theorem, the
other ray CC’ will be perpendicular to the collincation axis.
But as the point €* must lie on JC, the collineation axis can
be drawn by drawing a line perpendicular to /C at 1. Since
@ is a point of intersection of two rays PC and P'C’,itcan  Tangent a
be located at the intersection of PC anrd the collineation ch‘heaﬁo
axis. Now as O also lies on P’C, joining of P'Q means axig
a line parallel to [P, the intersection of this line with fC
locates the point C". ;
Thus, the procedure to find the conjugate point (" of any %’ig. 3

arbitrary point C is as follows:

o Draw the collineation axis by drawing a line perpendicular to /€ through /. Locate O at the intersection

of PC with the collineation axis.
» Draw a line parallel to /P through ( intersecting the line /C at C’, the requisite conjugate point of C.

Example 3.18 Use the Bobillier theorem bar mechanism shown in Fig. 3.33(a). The
to determine the centre of dimensions are AD = AB = 60 mm, BC=(CD=
curvaiure of the coupler curve 25 mm. AD is the fixed link and E is the midpoint

of the point E of the four- of BC.

P
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B Solution Proceed as follows:
1. Locate points f and 0. Join /Q which is the
E ~ collineation axis [Fig. 3.33(b}].
2. Draw IJ parallel to AD intersecting BC at
¢ J. Draw A’DY through J parallel to IQ and

obtain points 4" and I on AB and DC
respectively.

3. Through A’ draw a perpendicular to 48 and
through D’ draw a perpendicular to (.
Let these perpendiculars intersect at the
inflection point P, Draw the inflection circle
with /P as the diameter.

4. To find the conjugate point of £, draw the ray
{E. Then obtain the new collineation axis by
drawing a line perpendicular to /E through /.
Locate (O at the intersection of PE with the
collineation axis,

5. Drawalineparallelto/Pthrough(¥ intersecting
the line 7 at £”, the requisite conjugate point

% Collineation
&) axis () of E.
) _ On measurement, ££° = 33 mm
Fig. 3.33

314 CUBIC OF STATIONARY CURVATURE

Usually, the coupler curve (the Jocus or path of a point on the coupler) is a sixth-order curve whose radius of
curvature changes continuously. However, it is observed that in certain situations, the path has a stationary
curvature. Thus, if R is the radius of curvature and s is the distance traveled along the path, then dR/ds = 0
indicates a stationary curvature of the curve. The locus of ail such points on the coupler which have stationary
curvature at the instant is known as the cubic of the stationary curvature or the circling-point curve. Note that
the stationary curvature does not mean only a constant radius, but also that the continuously varving radius
passes through a maximum or minimum value.

Graphical Method

Let the fourJink mechanism be ABCD as shown in Fig. 3.34(a) in which AD is the fixed link. Now, as the
link A8 can rotate about 4 only, therefore, 4 is also the conjugate of B with a constant radius of curvature
AB. Thus, 4 lies on the cubic curve. Similarly, C also lies on the cubic as it has 2 constant radius of curvature
cc.

Now, adopt the following procedure:

1. Locate points / and Q as usual. Join /Q which is the collineation axis.

2. Letthe angle subtended by the ray AB with the collineation axis be &. The same angle is subtended
by the other ray CD with the centrode tangent at the point / in the opposite direction. Thus, make
angle DT equal to @ with 14 in the counter-clockwise direction as the angle made by 4B with the
collineation axis is clockwise. Then, /T is the centrode tangent.
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3. Draw a line IN perpendicular to /T. Then IN is the centrode normal.

4. Draw a line perpendicular to /4 at B intersccting /7 and /N at B, and 8, respectively. Through B, and
B,, draw lines parallel to /N and /T respectively intersecting at B,.

5. Repeat the step 4 by drawing a perpendicular to /D at C and obtain the point C,. Draw a line joining
B,C, which is an auxiliary line used to obtain other points on the cubic. Let B, C, intersect the centrode
tangent at L and the centrode normal at A

6. Choose any point G, on the line B,C, [Fig. 3.34(b)] and draw lines paratlel to the tangent and normal
and intersecting these at G, and G,. Draw /G L G, G,. Then G is another point on the cubic of the
stationary curve. Similarly, choose more points (such as /,) on the linc B,C; and obtain more points
lying on the curve. Draw a smooth curve passing through these points which is the required curve of
the cubic of staticnary curvature.

Centrode-normal
tangent

G,

) N Centrode-
=N tangent
Cy el e Centrode o .\ tangent

AT tangent [
8, -, el
(a) - . {b) ‘
T
Fig. 334,

Note that there are two tangents at / to the cubic of stationary curvature known as the centrode-normal
tangent and the centrode-tangent tangent.

Radius of curvature of the cubic at the centrode-normal tangent = /L/2

Radius of curvature of the cubic at the centrode-tangent tangent = JAM/2

The equation of the cubic of stationary curvature can be written as

l t 1 (.10)

L r—
A sing  Aysing  r

where r is the distance of the point considered on the cubic from the mstantancous centre I at an angle ¢
subtended by a line joining the point and f with the centrode tangent, A, and A, are constants and can be found
using any two known points lying on the cubic such as C'and D.

Ball’s Point A point at the intersection of the cubic with the infleciion circle is known as Ball’s point. It traces
an approximately straight path as it has a stationary curvature of infinity.

Summary L e %
1. Acceleration is the derivative of velocity with 2. The rate of change of velocity in the tangential
respect to time and is proportional to the slope direction of the motion of a particie is known as the
of the tangent to the velocity-time curve for any tangential acceleration,

instant.
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3.

10.

11.

The rate of change of velocity along the radial
direction is known as the centripetal or radial
acceleration, the direction being towards the centre
of rotation.

The angular acceleration of a link about one
extremity is the same in magnitude and direction
as the angular acceleration about the other and is
found by dividing the tangential acceleration with
the length of the link.

Acceleration imuges are helpful to find the
accelerations of offset pcints of the links. The
acceleration image of a link is obtained in the same
manner as a velocity image.

Acceleration of a point on a link relative to a
coincident point on a moving link is the sum of
absolute acceleration of the coincident point,
acceleration of the point relative to coincident
point and the Coriolis acceleration.

i

What are centripetal and tangential components
of acceleration? When do they occur? How are
they determined?

Describe the procedure to draw velocity and
acceleration diagrams of a four-link mechanism,
In what way are the angular accelerations of the
output link and the coupler found?

What is an acceleration image? How is it helpful in
determining the accelerations of offset points on a
link?

What is the Coriclis acceleration compenent? In
which cases does it occur? How is it determined?
Explain the procedure to construct Klein's
construction to determine the velocity and
acceleration of a slider-crank mechanism.

Explain the term conjugates in relation to two
points on two plain bodies.

Explain the Hartmann construction to find the
location of the centre of curvature of the locus of a
point on a moving body.

What is Euler-Savary equation? What are its two
forms? Explain how these are used to find the
location of canjugate points.

Use the Bobillier theorem to show that the
inflection circle can be drawn without requiring the
curvatures of the centrodes.

Define the term cubic of the stationary curvature.
Explain one graphical methed to draw it.

A crank and rocker mechanism ABCD has the
following dimensions:

7-

10,

il.

Exercises

12,

The Hartmann construction is a graphical method
to find the location of the centre of curvature of
the locus of a point on the moving body.

The EuvlerSavary equation is expressed as
A2 = AA”. AN’

The Bobillier construction is another graphical
method by which an inflection circle can be drawn
without requiring the curvatures of the centrodes.
The Bobillier theorem states that the angle
subtended by one of the rays (AA’ or BB') with the
centrode tangent is equal to the negative of the angle
subtended by the other ray with the collineation axis.
The locus of all such points on the coupler which
have stationary curvature at the instant is known
as the cubic of the stationary curvature or the
circling-point curve.

AB=zo7gm, BC=126m,CD=1m,AD=15m.
BE = 437.6 mm, CE = 87.5 mm and CF = 500 mm
E and F are two points on the coupler link BC. AD
is the fixed link. BEC is read clockwise and F lies on
8C produced. Crank AB has an angular velocity of
20.94 radfs counter-clockwise and a deceleration
of 280 radfs? at the instant #DAB = 60°. Find the
{iy instantaneous linear accelerationof €, £and F
(i) instantaneous  angular  velocities and
accelerations of links BC and D
{(iy266 mfs?, 330 m/s?, 161 ms* (i), = 5.92 rad/
S CW, @04 = 31.5 rad/s cow, @, =229 rad/s* cew, oy
= 100 rad/s® ccw]

[« 150 el

Fig 338

Figure 31.35 shows a mechanism in which O and Q
are the fixed centres, Determine the acceleration
of the slider 5 and the angular acceleration of the
link 8@ for the given configuration.

{14.5 m/s* towards left; 114 rad/fs® cw)



13. in a simple steam engine, the lengths of the crank

15.

16.

17.

18.

(

and the connecting rod are 100 mm and 400 mm
respectively. The weight of the connecting rod is
50 kg and its centre of mass is 220 mm from the
cross-head centre. The radius of gyration about
the centre of mass is 120 mm. if the engine speed
is 300 rpm, determine for the position when the
crank has turned 45 °from the inner-dead centre,
(i) the velocity and acceleration of the centre of
mass of the connecting rod

(i) the angularvelocity and acceleration of the rod
iy the kinetic energy of the rod
[() 2.7 m/s, 80 mfs? (i} 5.7 radfs, 173 radfs* (iii)
194 N.m]
From the data of a reciprocating pumg given in
Example 2.4, find the linear acceleration of the
cross-head E and the angular accelerations of the
links BCD and DE.

[9.25 mjs?; 60.8 rad/s’; s5.12rad/s?]
Figure 3.36 shows a toggle mechanism in which
the crank QA rotates at 120 rpm. Find the velocity
and the acceleration of the slider at D.

{(0.17 m/s; 0.83 mfs?)

In a crank and slotted-lever quick-return mechanism
(Fig. 3.15a), the distance between the fixed centres
© and A is 260 mm. Other lengths are: OF = 100
rm, AR = 00 mm, RS =150 mm and ZAOP = 120"
Uniform speed of the crank is 60 rpm clockwise.
Line of stroke of the ram is perpendicular to OA and
is 450 mm above A. Calculate the velocity and the
acceleration of theram 5. (0.64 mjs; 1.55mM/{s%)
For the inverted slider-crank mechanism of
Example 2.13, determine the angular acceleration
of the link QR. {358 rad/s)
In the pump mechanism shown in Fig. 3.22(a), the
crank OA is 5o mm long and the piston rod AC s
150 mm long. The lengths 0Q and CQ are 250 mm
and 80 mm respectively. The crank rotates at 300
rpm in the clockwise direction. Determine the

19.

20.

Accelerakion Analysis %

(a} velocity of the piston relative to walls

{b) angular velocities of rod AC and the cylinder

(c) sliding acceleration of the piston relative to
cylinder :

{d) velocity of piston (absolute)

{e} angularacceleration of the piston rod BC

[(a}1.52 m/s (b} 2.06 rad/s ccw of both, rod ACand

eylinder (c) 26 mjs* (d} 1.5 m/s (&) 239 rad/s® ccw]

In the mechanism shown in Fig. 3.37, the crank OA
drives the sliders 8 and D in straight paths through
connecting links A8 and CD. The lengths of the
links are OA = 150 mm, AB = 300 mm, AC = 100
mm, CD = 450 mm. OA ratates at 6o rpm clockwise
and at the instant has angular retardation of 16
radjs?. Determine {i) the velocity and acceleration
of sliders B and D, and (i} the angular velocity and
anqular acceleration of link £D.

{0.92 mfs, 0.31 mfs, 5.55 M5, 5.49 mfs?; 2.07
radfs, 6.53 radfs?)

1650, E
B

For the motion of the coupler relative to the
fixed link of the four-link mechanism as shown in
Fig. 3.38, locate the position of the centre of
curvature of the point £ using the Bobillier theorem.



Introduction

The analyses of the velocity and the acceleration, given in chapters 2 and 3, depend upon the graphical approach and
are suvitable for finding out the velocity and the acceleration of the links of a mechanism in cne or two positions of the
crank. However, if it is required to find these vaiues at various configurations of the mechanism or to find the maximum
values of maximum velocity or acceleration, it is not convenient to draw velocity and acceleration diagrams again
and again. In that case, analytical expressions for the displacement, velocity and acceleration in terms of the general
parameters are derived. A desk-calculator or digital computer facilitates the calculation work.

41 FOUR-LINK MECHANISM

Displacement Analysis Y c

A four-link mechanism shown in Fig. 4.1 is in equilibrium. a.
b, ¢ and d represent the magnitudes of the links AB, BC, CD
and D respectively. 6, B and @ are the angles of 48, BC and
DC respectively with the x-axis (taken along AD). AD is the
fixed link. 4B is taken as the input link whereas DC as the
output link.

As in any configuration of the mechanism, the figure
must enclose, the links of the mechanism can be considered
as vectors. Thus, vector displacement relationships can be _
derived as follows. ﬁ%’ig 4.

o v i v A vt T AT D

I

Displacement along x-axis
acos @+hcos B=d+ccos ¢ 4.1)
(The equation is valid for £¢ more than 90° also.)
or
bcosfB=ccosp-acos 8+d
or
(hcos B = (ccos @- acos G+ dy

= ¢?cos? @+ a’cos’ O+ df - 2uc cos Beos p—2ad cos B+ 2edcos ¢ (4.2)
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Displacement along y-axis

asin@+bsinf = csing (4.3)
or bsinfi = csingp-asin@
or (B sin B2 = (csin @ - sin G

= ¢2sin? ¢ +a° sin’ 8- 2ac sin Osin @ (4.9)
Adding equations (4.2) and (4.4),
W =c+a® +d?-2ac cos Ocos @ - 2ad cos O+ 2ed cos ¢ - 2ac sin Osin @ (4.5}

Put X
al-hl+ e+ dr =2k

Then,
2ed cos @ — 2ac cos Bcos @ — 2ac sin @sin ¢ — 2ad cos B+ 2k =0

or
cd cos @~ ac cos Bcos @ —ac sin 8sin @—-uccos G+ =0 (4.6)
From trigonometric identities,
2 tan ( .2 ]
sing =
1+ tan” [QJ
2
1 —tan (ﬂ]
cos QP = 2
1+ tan (E)
2

— tan? - /
m{l tan (Wz)}-accose{l tan (@12)} { 2tan(@/2)

adcos@+k=0
1+ tan” (@ /2) 1+tan® (@/2) l+tm1(¢12j

Muliiplying throughout by {] +tan® [gﬂ

¢d - cd tan? [g] — accos @ + ac cos & tan’ [-"2‘3] — 2acsin 8 tan [%]

w S

]+k+kwﬁ(§]=o

)+[ —2q¢ sin d] tan [¢]+[k a(d + c)cos 8+ ¢d] =0

- ad cos 8- ad cos @tan® [

[k — «ld - c) cos 8 - cd] tan? [%
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o P P
2 - - =
A tan [2J+Btan[2]+C 0

A=k—a(d-cjcos 8—cd
B =-2acsin B
C=k-af(d+cjcos 8+cd

where

Equation (4.6) is a quadratic in tan (%) . Its two roots are

tan(—(EJ— —B+\ B —44C
2

24

(4.7)

—Bi\}B:"—élAC}

=2tan"'
or; ¢ { 24

Thus, the position of the cutput link, given by angle @, can be calculated if the magnitude of the links and
the position of the input link are known, i.e., a, b, ¢, dand B are known.

A relation between the coupler link position /3 and the input link position & can also be found as below:

Equations (4.1) and (4.3) can be written as,

ccos@=acosf+ bcosfl-d (4.8
c sing = a sin@ + & sinf 4.9
Squaring and adding the two equations,
=g+ b +d + 2ab cos @cos f—2bd cos B—2ad cos 6 + 2ab sin @sin §
Put A+l =2
—2bd cos B+ 2ab cos cos f§ + 2ab sin Bsin f— 2ad cos 6+ 2K =0
~bd cos B+ ab cos §cos §+ ab sin Bsin f—adcos B+ & =0 (4.10)

Equation (4.10) is identical to Eq. 4.6 and can be obtained from the same by substituting f3 for ¢, - for
cand X’ for k.

Thus, the solution of Eq. (4.10) will be,

D (4.11)

f=2un [—Ei\/E2 -4DF]

where D =k’ —afd + b) cos@ + bd
E = 2ab sin@
F=F ~afd-b}cos@-bd
B can also be found directly from relation (4.3) after calculating ¢.
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Velocity Analysis

Let @,, @y, and @, be the angular velocities of the links 48, BC and CD respectively.
Rewriting Eq. (4.1),

acos @ +tbeosfi-ccos¢p—d=20 (4.12)

Differentiating it with respect to time,

gt—(acos&i+bcosﬁ—cc05(p—d)=

4 a8 4 4B d d¢ -4
w&( $6)+ -5 (beosB)- wmm (m

4o d B, o dpd -
7 dB( 0s B} + dt dﬁ o5 f) - (ccowp) =0 (d is constant)

— 03,5In8 — baysin B+ c sing=10 (4.13)

Similarly, rewriting Eq. (4.3),

asin@+bsinff-csing =0 (4.14)
Differentiating it with respect to time,

a w,cos8 + baycos B- c wcosp =0 (4.15)
Multiply Eq. (4.13) by cosfi and Eq. (4.15) by sinff and add,

a @{sinf cosB— cosf sinf) — ce (sinfl cos ¢ — cosPsin ¢} =0
or afsinfB-0) -ca.sinff-¢)=0

or
_ aw, sin(f - 6) (4.16)
csin(B - 9)
Multiply Eq. (4.13} by cos ¢ and Eq. (4.15) by sin ¢ and add,
a @,(sin @ cosB — cos ¢ sind) + bay(sin ¢ cosf — cos psinf) =0
or
a o sin(p — 6} + by, sin(ep - f=0
or
W, = - %l (4.17)

Since g, b, ¢, 8, B, ¢ and @, are already known, @, and @, can be calculated from Egs (4.16) and (4.17)
respectively.
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Acceleration Analysis
Let ,, &, and @, be the angular accelerations of the links a, & and c respectively.

Differentiating equations {4.13) and (4.15) with respect to time in the above manner or rewriting in the
following form,

-a osinet - bwsinwy +c osns =0 : (4.18)

a w,co8m, + beycoswyt — ¢ @,.co80,0 =0 (4.19)
Differentiating these equations with respect to time,

(—ae, sin 6 — aw? cos 8) — (ba, sin § - b, cos B) + (ca, sing + cw? cos@) =0  (4.20)

(4, cos&— aw’ sin 6) + (b, cos B — bw; sin B) —(ca, cos @ +ca sin@)=0 (421

do, _dw,

dw,
where o, = T,Gh = —}"— and o, = —'d'(—
i dt t

Multiply Eq. (4.20) by cos @ and Eq. {4.21) by sin @ and add,
att,, (sin@cos—cospsin)— aw? (cos B cos @ +sin 8 sin @)
~bat, (sin B cos @ —cos fsin@)— bew; (cos Bcos @ +sin Bsin @)+ cw? =0
ot
agr, sin( — 8) — aw? cos(p —8) — bay, sin( B — @) — bw; cos(@ - B) + cow? =0

or

_aa, sin(p - 6) - aw? cos(p — 8) — by cos(p— B) + ce?

o 422
b hsin{f} - @) (4:22)
Multiply Eq. (4.20) by cos Sand Eq. (4.21) by sin S and add,

atx,, (sin fcos @ — cos Bsin 6)- aw? (cos Bcos 6 +sin fsin0)— bar;

+ce, (sin @ cos f—cos@sin §)+ e’ (cos fcos ¢ +sin Bsin@)=0
or

ac, sin(f - &) - aoy’ cos(ff—8)— b} — cor, sin(f - @) + cw? cos(B-@)=0
or

R o am? gy ol 2 _
o = aa,, sin( B~ §) — aw’: cos(f - 8) — bw;, + cay; cos(f— ) (4.23)

csin(B - @)
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#include<stdio.h>

#include<conic.h>

#tinclude<math.k>

vold main ()

{
int i,j,iht,th,theta,limit,ins:
float a,b,c,d,vela,acca,theL,aa,bb,cc,betl,bet2,betdl,
betdZ,numl,numZ,phil,phl,unroot,undroot,pi,k,phh,phiZ,
EhZ,vell2, dthet;
floak num[2},phi[21,ph[2},bet[2],betd[2],blf2],b2{2],
b3[2],b4[2],cl[2],c2[2],c3]2],:4[2],accc[2|,accb[2},
velb[2],velc[2];

clrscri);

printf (“enter values a,b,c¢,d,vela,azca, theta, limitin™) ;
scanf(“%f%f%f%f%f%f%d%d”,&a,&b,&c,&d,&vela,&acca,
&theta, &limit);

printf{ * thet wvela acca vhi beta “);
printf{ * velg ve Lo oo acch \n");
ins=1;

if{vela==0 && acca>d)ins~0;

pi=d4*atan{l);
iht=3&0/theta;
if{vela>0 &s& acca==0) {ins=0;1ht=360/theta; }
if{ins==1)iht=theta;
dthet=pi*2/iht;
if {vela==0 && acca>D)ihu=iht+limit/theta;
for{j=0;j<iht+1l;j++)
{
1f{j»{iht-360/theta-1} &s ins==0}acca=0;
thet=i*dthet;
if fins==1){j=iht; thet=theta*pi/_80;
th=theta*3;
iff{ins==1}th=theta;
k={a*a-h*b+c*c+d*d) /.1;
aa=k-a* {d-c) *cos{thel}-c*d;
bb=-Z2*a*c*sin{thet);
co=k-a* {d+c) *cos{thet ) +o~d;
unrcct=bb*bb-4*aa*ceo;

1f funroot>0)

B
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{

}

undroot=sqrt {unvoct});

num[0]=-bb+undrcot;

num[i]=-bb-undraot;
for (i=0;1i<2;1++)

{

phi[i}=atan(num[i]*.S/aa)*2;
ph(il=phi{i]+180/pi;
bet[i]=asin((c*sin(phi[il)—a*sin(thet))/b};
betd{il=bet [1]*180/pi;
velc[il=(a*vela*sin(bet[i]-thet))f(c*sin(bet[i]
-phifil}});
velb[i]=(a*vela*sin(phi[i]—thet))/(b*sin(bet[i}
-phifili):

cliil=a*acca*sin{betii]-thet);
c2[i}=a*pow(vela,2)*cos(bet[i}—Lhet)+
br*pow{velb[i] 2} :
c3[i}=c*pow(velc[i],2)*cos{phi[i]—bet{i]);
cdlil=c*sin{bet{1]-phil[il};
acccl[i}=(cl(i)-c2[1)+c3[1))/cdii]s
blli]l=a*acca*sin{phi[i]-thet);
b2[i]=a*pow[vela,2)*cos(phi[i]—thet);
b3[i)-b*pow(velb{il, 2) *cos{phili]l-bet[i])
—c*pow(velc[i],2};

bd[i]=b*sin{bet[il-phi{il);
acchb[il=(bl[ii-0Z[1)-BI[i]}/bA[i]:

printt¢ “%6.2d %6.2f%8.2f %8.2f %8.2f %6.2f
26.2f %6.2f 26.2f\n”,th,vela,acca,phlil, betdii],
velc[i],velk[i],acce[l},acch(i]);

vela=sqrt(vela*vela+2*acca*dthet);

getch(}s

fHis.

Figure 4.2 shows a program in C for solving such a problem. The program can be used to find the angular
velocities and accelerations of the output and coupler links for the following cases:
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1. Link 4B is a crank and rotates at uniform angular velocity. In this case, the acceleration of the input
link will be zero. Ifthe link A8 is not a crank but a rocker, the program will make the calculations only
for feasible cases.

2 Link AB is a crank and starts from the stationary position. In this case, the initial velocity is zero
and a value of the acceleration has to be provided along with the limit of the angle up to which
the acceleration continues. At that angle when the meximum velocity is attained, the acceleration
automatically reduces to zero and the onward the crank stans rotating at constant angular velocity.
Further, calculations are made for one complete revolution.

3. For instant values of input velocity and acceleration, only one calculation is made for that specified
position.

Various input variables are

a, b, ¢, 4  Magnitudes of links 4B, BC, CD and DA respectively (mm)

vela Angular velocity of the input link AB (m/s)
acca Angular acceleration of the input link (mv/s?)(acceleration is taken positive, deceleration
negative)
theta The interval of the input angle, i.e.. the results are to be taken with a difference of 10°,
' 20° or 30°, etc., starting from zero
Limit Angle up to which acceleration cosinues (for the case 2: in the other cases any value

may be given)
The output variables are

thet Angular displacement of the input link 4B (degrees)
phi Angular displacement of the output link DC {degrees)
beta Angular displacement of the coupler Jink BC (degrees)
velc Angular velocity of the output link DC (radfs)

velb Angular velocity of the coupler link 8C (rad/s}

accc Angular acceleration of the output link (rad/s)

acchb Angular acceleration of the coupler link (rad/s?)

The results are obtained in sets of two possible solutions for each position of the input link. In case
the input 4B is not a crank, the results are obtained for the possible positions only. The counter-clockwise
direction is considered as positive and the clockwise as negative.

“USE OF COMPLEX A_GEBRA

For a four-link mechanism, we can write

a+b-ec-d=0 (4.24)
Transforming it into complex polar form,
ad® +beP—ce®-d=0 (4.25)

Now, we know, ¢ ¢ =cos 8+isint
Thus, transforming this equation into complex rectangular form and separating the real and imaginary
terms,
acos@+bcosff=d+ccosd (4.26)

and asin @+hbsin B=csin ¢ (4.27)
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which are the same equations as 4.1 and 4.3 and thus can be solved 10 find Band 8.
Differentiating Eq. (4.25) with respect to ¢,

iade® +ibBeP —icpe® =0 (4.28)

or iaw, e+ ibw,e? —icw e =0 (4.29)

Again, transforming this equation into complex rectangular form and separating the real and imaginary
terms,

a w,cos 0+ by cos f ~c o cosp=0 (4.30)

—a @, sin 8- b, sin B + ¢ @.sing = 0 (4.31)

which are the same equations as 4.13 and 4.15 and thus can be solved to find w, and @.
Differentiating Eq. (4.28) with respect to ¢,
ia(0e” +i9%e?) + i f &P + ifle?y - ic(@e +ig?e®)=0 (4.32)
or ialo,e” +iw, %)+ ibayf ¢ +in ey~ ic(a,e® +iw ) = 0 {4.33)
Transforming this equation into complex rectangular form and separating the real and imaginary terms,
—ae, sin 8 ~ aw] cos 6 — ba, sin B - ba; cos B+ car, sin ¢ + ¢ cos = 0 (4.34)
ac, cos @ — aw’ sin @ + ba, cos B~ bew; sin f— cat, cos @+ e’ sing =0 (4.35)

which are the same equations as 4.20 and 4.21 and can be solved as before.

43 THE VECTOR METHOD

We have
ga+h-c—-d=0

Assuming that the angles B and ¢ have been determined by any of the above methods, differentiate the
above equation with respect to time,

a,xat gy xbh-—w xe =0 (¢ b, ¢ and d are constants) (4.36)

Let 4, b and c be the unit vectors along a, b and ¢ vectors. In plane-motion mechanisms, all the angular
velocities are in the k direction. Therefore,

aw, (k x &) + b @, (kKX b) ¢ o, (kx ) =0 (4.37)
Take the dot product with b, . A
aw,(kxa)b+bw,(kxbb—ce (kxc)b=0
aw,(kxd).b+0-cw (kxc)b=0
awy (k x a). b
=———T———-
or ek x b). b {4.38)
Taking the dot product with c.

a@,(kxd).c+haw,(kxb).c-cm (kxe)e=0
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aw,(kx8).c+bw (kxb).c—0=0

_aw,(kxa).e¢

or wh = K f)) I (4.39)
It can be shown that Eqs 4.38 and 4.39 are the same as Eqs 4.16 and 4.17 as follows:
LpE 0 K .
(kx8).b={ 0 0 1.b=(-sinBi+cos0j).b
cosf sinf 0
= (—sin 8. + cos 8.} . (cos Bi +sin B §)
=—sin #cos +cos Bsin B
=sin{f- &
Similarly, A
(k x¢).b=sin (- ¢)
Therefore,
_ aty{kx a).b aw,, sin(f - &)
T ekx&b esind f - @) (4.40)
In the same way,
aw {kxa).c aw,, sin(p— 0
MeT T b;lixé).)é - b:in((;[fﬁ)) (44b)
which are the same equations as equations 4.16 and 4.17.
Differentiating Eq. 4.36 with respect to time to get the accelerations,
Chnxa+m,,x(m.,xa)+(h.a,xb+mbx(mbxb}—d)fxc—mg X (B xecy=0
or
O, Xa+ W X (0 xa)+ ¢ Xb+wyx(Wpxh)—0 Xe— 0 x{®xc)=0
or
aafkxd)-a mﬁﬁ+bab(kxﬁ)——bm%ﬂ e kX&) +c@wié=0 (4.42)

Take the dot product of this cquation with b,

aafkxd) b-owld. b+0-belb. b cakxé).b+cw?é . b=0

_at kxd). b-awld.b-bwit+cere. b

[5

k> &) . b (4.43)
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Since,
(kxa).b=sin(5-9),
a.b =cos(f-0,
b.b =t
¢.b =cos(f-¢)

A

(kxc}. b =win (- ¢)
The above equation reduces to

o = A% Sin(B ~8) - aw; cos(fi — 6) — bw} + cw? cos(f - @)

¢ csin(ff — ) (4.44)
which is the same as Eq, 4.23.
Taking the dot product of Eq. 4.42 with ¢,
ae kx4). b-awld.b +baukxb).é bl b c+tcwle.c=0
or b=aaa(kx§).é—awf,ﬁ‘ﬁ—bmf,AbAEﬂ?mi
ok x ). b (4.45)

which can be shown to be the same as Eq. 4.22, i.e.,

_ ao, sin(p —0) - aw? cos(p - 0) — bw? cos(@ - B) + ce’

&

Example 4.1  In a four-link mechanism, the
dimensions of the links are as
under:
S AB=50mm, BC=66 mm, CD
=56 mmt and AD = 100 mm

AD is the fixed link. At an instant when DAC is
6P, the angular velocity of the input link AB is
10.5 radfs in the counter-clockwise direction with
an angular retardation of 26 rad/s2, Determine
analytically the angular displacements, angular
velocities and angular accelerations of the output
link DC and the coupler BC.

Solution We have,
2k=a P+t £
k = (50% - 662 + 562 + 100%)/2
= 5640
A=k—afd-c)cos O—cd
=5640—50(100 - 56)cos 60°- 56 x 100 =—1060
B =—2gcsin 8 =—2 x50 x 56 sin 60° = — 4850

bsin(f - @)

C=k—aid+c)cos 8+¢cd
= 5640 - 30 (100 + 56) cos 60"+ 56 x 100 = 7340

0= 2tn" {ﬂﬁ'i\/}?z —4AC}

24

| 4850 J(=4850)% - 4 x (~1060)(7340)
- 2 % (—1060)

=2 tan’'(1.199 or —5.759)
= 100.35° or -160.3°
Taking the first value,
we have,
bsinfB=csin@—asin @
66 = sin B= 56 x sin 100.35° —50 = sin 60°
sinfi = 0.1786
B = 10.29°

_ aw,sin{fi - 0)
T esin(B—g)



_ 50x10.5sin(10.29 — 60°)

- = 7.15 rad/s
563sin(10.29 - 100.35)
. aw,sin(p - 8) B
B bsin{gp — B) -
_ 30 x10.5sin(100.35° — 60°) 5,15 rad/s

66 x sin(100.35° —10.29°)
aa,sin(f ~ 6) - aw’cos(f - 8)
—bmf, +car’cos(ff — @)
csin(f — @)

50 % (-26)sin(10.29° - 60°) — 50 x 10.5°
c0s(10.29° — 60°) — 66 X (5.15)°
+567 cos(10.29° — 100.35%)
565in{10.29° —100.35°)

&, =

Ernter values of a, b, ¢, d, vela, acca,
50 &6 56 100 10.5 -26 &0 0

thet vela acca phi beta
60 10.5 -26.,00 -1e60.,35 -70.29
60 10.50 -26.00 100.33 10.249
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= 77.26 rad/s?
ar,, sin(@ - 8) ~ aw? cos(p — 8)
—bwﬁ cos{¢— )+ ca)f.
hsin(f — )
50 % (=26)sin(100.35° - 60°) — 50 x 10.5%
cos(100.35° — 60°) - 66 x (5.15)°
cos(100.35° ~10.29°) + 56 x 7.15%)
56sin(10,29° —100.35%)

= 3298 rad/s?

Using the other value of ¢, (¢ =—160.3°), another
set of values of velocities and accelerations can be
obtained.

The results obtained using the program of
Fig. 4.2 are given in Fig. 4.3,

th=

theta, limit
velc velb acce acch
-7.15 3.15 50.04 94 .32
T.15 -5.15 77.26 32.98

gl‘!g 4.3*%

{Compare these values of @, @, &, and ¢, at 60° with the values obtained graphically in Fxamples 2.1

and 3.1]

Example 4.2  In a four-link mechanism, the
, dimensions of the links are as
. under:

AB = 20mm, BC = 66 mm, CD
= 56 mm and AD = 80 mm
AD is the fixed link. The crank AB rotates at
uniform angular velocity of 10.5 rad/s in the
counter-clockwise direction. Determine using the

Enter values of a, b, ¢, d, vela, acca,
20 66 56 80 10.5 40 O

thet vela acca phi beta
0o 10.5 0.0 -115.74 -52.51
o0 10.5 a.0 110,74 52.51
10 10.5 0.0 126,30  -61.47
40 13.5 0. 103.82 38.99
80 10.5 0.0 -139.02 -58.74
80 10.5 6.0 115.1¢ 29.87

program of Fig. 4.2, the angular displacements,
angular velocities and angular accelerations
of the output link DC and the coupler BC for a
complete revolution of the crank at an interval
of 40°, '

Solution The results obtained using the program
of Fig. 4.2 are given in Fig, 4.4.

theta, Limit

velc velb ageooe aceh
-3.50 ~3.50 -37.58 18.546
-3.50 ~3.50 37.58 -18.%%
-4.06 -0, 83 15,50 50.99
0.07% -3.15 56.46 20.96
-2.51 2.03 26.17 31.04
2.92 -1.62 27.30 22.42

fcontd,)



by

120
120
160
la
200
200
24¢
240
280
280
320
320

10,
10.
10.
10,
1C.
10.
10.
10.
10.
10,
10,
10,

&G Theory of Machines

B 0.¢ ~145.28  -48,22 -0.77 3.20 26,64 4.54
5 0.0 123,44 26.44 3.77 -0.20 -0.6%6 21.44
5 a.c -144.69 -26.44 .12 2.75% 29.94 -1¢.40
5 0.G 136,77 28.52 ey 1.32 -22.41 23.99
5 0.¢ -13€.77%  -28.52 Z.9¢€ 1.32 22.41 -23.99
5 0.¢ 144,649 36.44 1.12 2.75 -29.94 16.40
] 0.¢ -123.48 -Z26.44 3.77 -0.20 G.66 —-21.42
5 0.¢ 145,28 48.22 =077 3.20 -26.64 -4.54
] 0.G -11a.1s -25.867 2.92 -1.62 -27.30 22.42
] 0.4 13%.02 SR.T74 2.5l 2,03 -26.17 -31.04
] a.4 -la3.82  -38.9% 0.a7 -3.15 -56.46 -20.8&
3 0.0 126,30 Bl.47 - 406 -0.83 -15.50 -50.99

' Fig 4.4

44 SLIDER-CRANK MECHANISM

Figure 4.5 shows a slider-crank mechanism in which the strokceline of the slider does not pass through the axis
of rotation of the crank, Angle 8 in clockwise direction from the v-axis is taken as negative.
Let e = cecentricity (distance CD).

Displacement along x-axis. {
acos@+ hcos(-fiy=d (4.46)
or
becosfB=d-acos @ (4.46a)
Displacement along y-axis,
asin@~+ bsin (- +e (4.47) ,
o . L) S -x
bsinfB=e—asin@ (4.47a) %ﬁg 4‘5{
Squaring Eqgs (4.46a) and (4.47a) and adding, -
b = @ cos’@+ d? -2ad cos@ + &’ sin”® @ +¢* -2ae sin @
= + & +d’ - 2ae sin @-2ad cos 8
or
d* - (2acos Od + @ - B +¢* - 2ae sin =10
or
d*+ Cd +Cy=10 (4.48)
where C,=-2acos 8

2 A 4 .
Cio=a —b +e - 2uesin 8

Equation {4.48) is a quadric in 4. Its two roots are,
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4Gt JCE - 4c,
2
Thus, if the parameters a, b e and 8 of the mechanism are known, the output displacement can be

computed.
Also, from Eq. (4.47a),

(4.49)

B =sin" €= aind (4.50)
Velocity Analysis

Diﬂ‘erentiating Egs. (4.46) and (4.47}) with respect fo time,

—aw, sin 8- b @, sin f- 7 =9 (4.51)

am, cos @+ b @y, cos B=10 (4.52)
Multiply Egq, (4.51) by cos Band Eq. (4.52) by sin Band add,

aw, (sinfi cos B —os B sin - d cos B=0

d =S5 -6) :z:(g =9 _ (4.53)
From Eq. (4.52),

o, = aw, cos 8 (4.54)

beos 8

@, provides the anguiar velocity of the coupler-link whereas gives the linear velocity of the
slider.

Acceleration Analysis
Differentiating Egs (4.51) and (4.52) with respect to lime,

- [aaa Sin 8+ aw? cos 9] ~[baty sin g + bw? cos [3] —d=0 (4.55)
[ao:u cos @+ aw? sin QJ - [ba,, cos B + bw; sin ﬁj =0 (4.56)
Multiply Eq. (4.55) by cos B and Fq. (4.56) by sin B and add,
or aa, Sin (- 8)~ aw? cos (ﬁ-8)=bmf—-(};cosﬁ=0
50, sin (B - 0)— aw” cos (B - 8)— by}
d = aa, (ﬁ ) 7 (ﬁ ) i (4‘5?)
cos
From Egq. (4.56)
o, = 9% °08 8 - aw] sin @ - be? sin B (4.58)
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#include<stdio.h>
$include<conic.h>
#inculde<math.n>
void maini)

{
int j,iht,th,theta,limit,1ns;
float a,b,e,cl,c2,03,c4,veLa,acca,thet,pi,dxhet,bet,
velb,vels,accs,acch;
clrscr{);
printf{“enter values a,b,e,vela,acca,theta,ijmit\n”);
scanfi(*sfsfsfsfris dads ™, aa, &b, e, hvela, dacca ,&theta,
11 mit});
printf( * thet vela acca beta ™)
printf{ * velc velb acce acch wn");
ins=1;
if (vela==0 6&& acca>l) ins=0;
pi=d*atanil);
iht=360/theta;
if (vela>0 && acca==00} {ins=0:;iht=360/theta; ;
if fins==1)iht=theta;
dthet=pi*2/iht;
if {vela==0 && accax0}iht-iht+limit/theta;
for (3=0;7<ihe+1;3+4*)
{
if(j>(iht--360/theta-1} && ing==0)acca~0;
thet=j*dthet;
iff{ina==1) {Jj=iht; thet=theta*pi/183;}
th=theta*J;
iftins=-=1)th=theta;
bet=asin((e—a*sjn{thet))fb);
vels=—a*vela*sjn(thet—bet)/(cos(bet)*lOOO);
velb=—a*vela*cos(thet)/b*cos(bet);
cl=a*acca*sin:bet—thet}—b*pow(uelb,Z);
c2=a*pow(vela,2}*cos{bet—Lhet};
acos={cl-c2)/ {cos{bet)*1000};
c3=a*acca*cos{thet}—a*pow(vela,2)*sin(thet);
c4=b*pow(velb,2)*sin{bet);
acch=-(c3-cd) / {b*cos(bet))s
printf( “%6.2d %6.2%f 1g.2f %6.4F 36.2£%8.2F
$8.2f %8.2f\n”,th,vela,acca,bet*1SGKpi,vels,
velb,accs, accbl);
vela=sqrt(vela*uela+2*acca*dthet);
¥
getch )y
}

‘Fig. 4.6



The input variables are

a,b,e

vela
acca

theta
limit

Computer-Aided Analysis of Mechariisms #

The magnitudes a, 5 and ¢ respectively (mm)

Angular velocity of the input link 48 (mv/s)

Angular acceleration of the input link (m/s?)

The interval of the input angle (degrees)

Angle up to which acceleration continues, in case the crank starts from
stationary position (in other cases any value may be gtven)

The output variables are

thet
bet

vels
velb
AcCcs
acch

Example 4.3

Anguiar displacement of the input link 4B (degrees)
Angular displacement of link 48 (rad/s)

Linear velocity of the slider (m/s)

Angular velocity of link BC (radss)

Linear acceleration of the slider (m/s?)

Angular acceleration of link BC (rad/s?)

In a slider-crank mechunism, (i} Velocity and the acceleration of the slider
the lengths of the crank and (ii) Anguiar velocity and angular acceleration
the connecting rod are 480 of the connecting rod

L] mm and 1.6 m respectively. It
has an eccentricity of 100 mm. Assuming a
velocity of 20 rad/s of the crank OA, calculate
the following at an interval of 30°:

Solution  The input and the output have been
shown in Fig. 4.7. The results have
been obtained at an interval of 30° of
the input link {(crank).

Enter values of a, b, e, vela, acca, theta, limit

480
thet
0o
30
60
30
1290
150
180
218
240
270
300
330

1600 100 20

vela

20.
20.
23,
20.
20.
20.
20,
20,
20,
2Q.
20.
20.

o= I oh o A o e o T o D o T T = T o T

0 30 0
acca veta vels velb accs acch
0.0 3.58 0,60 -5.99 -24%.449 2.25
0.0 -5.02 -5.33 -5.18 -200.88 57.88
0.0 -11.38 -9.28 -2.94 ~76.65 104.27
0.0 -13.74 ~%.60 0.03 46,94 123.53
0.0 -11.38 ~7.35 2.94 21535 104.27
c.0 -5.02 -4.27 5.18 131.8&7 57.88
G.0 3.58 -C.50 5.99 134.51 2.25
0.0 12.27 2.35% 5.08 144.54 -55.80
0.0 18.80 6.68 2.84 138,98 -107.04
6.0 21,25 9.30 -0.00 74,68 -128.76
.0 18,80 9.95% -2.84 -53.02 -107.04
0.0 12.27 6.61 ~5.08 -187.61 -55.80

FFig. 4.7
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A coupler curve is the locus of a poihl on the coupler link. A ¥,
four-link mechanism ABCD with a coupler point £ (offset)’is
shown in Fig. 4.8. Let the x-axis be along the fixed link 4D,

letBE=¢ and LCBE=«

Angles B and y are defined as shown in the
diagram.

Let X, and ¥, be the coordinates of the point E.

Then,

X,=acos 8+ecos{a+f) {4.59)
Y, =asin @+esin{a+f {4.60)

In these equations g, e, & and o are known. To know the

:i' FITITTITTITITTIT 1% X

Fric 4

coordinates X, and ¥,, it is necessary to express f§ in terms of known parameters, i.e., a, b, ¢. d, ¢, 8and o

In ABDC, cpplying cosine law,

B4 o
cos(Pp+y)y=—">"—"—
B+7) 251
_ .\!:2+f2—c2
- 1
of B+y =cos [ 257
2 2 2
ﬁ:cos_} —b tf e 4
2bf
tany'—g{“ BF  asné
where FD AD—-AF d—-acos®
- tan"’ asin®
or 4 d—-acos@

Jf? can be found by applying the cosine law to A4BD,
le.,

fP=a*+d*-2adcos 6

Having found the value of the angle 8, the coordinates
of the point E can be known for different values of 8
from Eqgs (4.59) and (4.60).

A coupler curve can aiso be obtained in case of a
slider-crank mechanism (Fig. 4.9). The angle CBE is a
and the eccentricity is e.

Draw BL 1 AD  and CFLBL

(4.61)

(4.62)

X, =acos 8+ecos(a— ) {4.63)
Y,=asin 8+ esin (a— ) (4.64)
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B (negative) can be expressed in terms of known parameters as below:
BF BL-FL asinf-¢

sin f§ = —
= ac= "5 b
B = sin™" {ﬁm—f;‘"- (4.65)

Figure 4.10 shows a program to find the coordinates of the coupler point for both the above cases.
The input variables are
a, b, € The magnitudes a, 5 and e respectively (mm)

case 1, in case of a four-link mechanism

2, in case of a slider-crank mechanism
c The magnitude ¢ (case 1) or eccentricity ¢’ (case 2)
d The magnitude d {case 1) or 0 (casc 2)

alph The angle ¢ (degrees)

The output variables are:

thet Angular displacement of the link 48 (degrees)
xe X-coordinates of the point £

ye Y-coordinates of the point £

#inculde<stdioc.h>
#inculde<conio.h>
$inculde<math.h>
void mainf{)
{
int ras;
float a,b,c,d,e,f,alph,gamm,bet,squ,pi,:het,theta,
xe, ye;
clrscri);

printf (“enter values of a,s,<,d,8,alph,cas, theta\n”);
scaf “%f%f%f%f%f%f%d%f",&a,&b,&c,&d,&e,&alph,
&cas,theta};
printf(* theta xe yeln”y;
thet=0;
pi=4*atan(l};
while (thet<359*pi/180}
{
gamm=atan (a*sin (thet) /{d-a*cos{thet)});
squ=a*a+d*d-Z*a*d*cos{thet);
f=pow {squ, .5);
if (cas==l)betLacos((b*b+f*f—c*c]/2*b*f))—gamm;
if (cas==2} bet=aszin((c-a*sin(thet)) /b);
Xe=a*cos (thet) te*cos{alph*pi/180+bet) ;
ye=a*sin(thet}+e*sin{alph*pi/180+bet);
printf{ “%10.2f %10.2f %10.2f \n",
thet*180/pi, x2, yel ; thet=thet+theta*pi/180;
}
getch{};
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Example 44  Draw a coupler curve of the Solution The input and the output have been shown
coupler point E of a four-  in Fig. 4.11 using the program of Fig. 4.10 for the
link mechanism having the given date. The required coupier curve has been
' Jollowing data: shown in Fig. 4.12.
AB = 50 mm, BC = 66 mm, CD = 90 mm, C

AD = 100 mm, BE = 30 mm LCBE = 40° o \\\\\\‘
(refer to Fig. 4.8) ' \ e 5\\\
Enter wvalues of a, b, o, d, e, a.oh, L b
cas theta F"
50 66 90 100 30 40 1 30 o}
theta X Ve !
0.0 26.73 18.93 'E?
30.0 35.27 53.90 Y, A g d D
60.0 29.79 72.92 ‘oo o
50.0 11.70 77,62
126.0 -9.51 68.95 s
150.0 -26.10 19,58 &4@
180.0 -34.41 25.63 ' )
21¢.0 35,43 3.95
240.0 -28,72 -13.53
270.0 -15.08 -24.06
300.0 1.75 ~-24,35
330.0 16.54 -11.414
Summary
1. To draw velocity and acceleration diagrams again E=2absing
and again for different positions of the crank is not F=k'—a{d-b) cos8-bd
convenient. Analytical methods prove to be very (i) The velocities of the output and coupler links
helpful. are given by
2. In analytical metheds, the links of the mechanism aa, sin(f — 6) aw,, sir-n—8)
are considered as vectors. e :m ne @y = " bsintg - B)

3. Inafour-link mechanism,
{i) The angle of the output link is given by

r_ .
[ 2tan? \\M} ao, Sll'l(ﬁ - 9) - ﬂ{ﬂ; COS(ﬁ -

{iv} The accelerations of the output and coupler
links are given by

~bay, + co? cos(f — @)

2A a, o)
csin{f— o
where 2k=a*-b*+* + d? and
; . k;:c(:; ;J cos - cd aa, sin{p — 8) — aw? cos(p — 6)
T F 2
C=k-afd+c)cos@+cd g, = — 20 COS(@ ~ B+ cao;
(i) The angle of the coupler link is given by bsin(f - @)
. Inaslider-crank mechanism
—E+\JF?—,DF 4 )
B=ztan™ |V——-—%-LD-} (i) The displacement of the slider is given by
2,
=G, 0 - 4C
where 2k’=a*+ b2 —c2 + d* d= 1T ¥5 76

D=k'—a(d + b) cosf+ bd 2



where C,=-2acos@
C,=a*-b*+e*- 2aesin 0
_, e—asing
b
(i) The velocities of the slider and the angular
velocity of the coupler are given by
_ a@, sin(f - 6) and @, = aey, cosé
cosf§ beosf

(i) The angie of the coupler, B =sin

d

. Find expressions to determine the angles of the
output link and coupler of a four-link mechanism.
Deduce relations for the angular velocity and
accelerations of the same links.

. Deduce expressions 1o find the linear velocity and
acceleration and angular velocity and angular
acceleration of the coupler of a slider-crank
mechanism.

. What are coupler curves? Deduce expressions to
draw the same in case of a four-link mechanism
and slider-crank mechanisrn,

Derive expressions for the displacement, velocity
and acceleration analyses of an inverted slider-
crank mechanism.

. Inafour-link mechanism (Fig. 4.1), the dimensions
of the links are AB = 30 mm, BC = 80 mm, CD = 40
mm and AD = 75 mm. If OA rotates at a constant
angular velocity of 30 radis in the clockwise
direction, calculate the angular velocities and the
angular accelerations of links BC and CD for values
of @at an interval of 30°,
in a slider-crank mechanism (Fig. 4.5), the crank
AB = 5o mm, BC = 160 mm and eccentricity e = 15
mm. For the angle 8 = 45°, angular velocity of AB
= 8 radfs with an angular acceleration of 12 rad/s’
(both clockwise), find the linear velocity and the
acceleration of the slider and the angular velocity

Exercises

Computer-Aided Analysis of Mechanisms i}

{iv} The accelerations of the stider and the angular
velocity of the coupler are given by

- ae, sin(—0)—am} cos (B — 8)~- b} and

d
cosfi
ac;, cosf — awy; sin@ — bwf sin B
ab =
beos B
*

and the angular acceleration of the connecting rod
analytically.
{o-32 mfs, 1.98 m/s?, 1.78 rad{s, 16.53 rad/s?)

- Derive expressions to find the angular displace-

ment, angular velocity and the angular acceleration
of the link £F of a six-link mechanism shown in
Fig. 4.13. AB is the input link having an angular
velocity of @ radis in the counter-clockwise
direction.

G

o 4t

- Derive expressions for the coupler curves of an

inverted slider-crank mechanism.

. For the data of Example 4.3, take some maore

coupler paints by taking different values of 8F and
Zo and draw coupler curves for the same. Make a
cardboard modei of the mechanism and abtain the
coupler curve by rotating the crank through 360°.
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Introduction

Dimensional synthesis of a pre-conceived type mechanism necessitates determining the principat dimensions of
various links that satisfy the requirements of motion of the mechanism. A mechanism of preconceived type may be a
four-link or a slider-crank mechanism. Principal dimensions involve link lengths, angular positions, position of pivots,
eccentricities, angle between bell-crank levers and linear distance of sliders, etc. Synthesis of mechanisms may be
done by graphical methads or by analytical means that involves the use of calcutators and computers. In general, the
types of synthesis may be classified as under:

1.

3.

Function generation It requires correlating the rotary or the sliding motion of the input and the output
links. The motion of the output and the input links may be prescribed by an arbitrary function y =
ftx). This means if the input link moves by x, the output link moves by y = ffx) for the range x, < x <
%, There lies n values of independent parameters (x,, x,, .....x,) in the range between x, and x,,_ . In
case of rotary motions of the input and the output links, when the input link rotates through an angle
0, the output link moves through an angle ¢ corresponding to the value of the dependent variable y =
J1x). In case of slider-crank mechanism, the output is in the form of displacement s of the slider. It is
te be neted that 2 four-link mechanism can match the function at onty a limited number of prescribed
points. However, it is a widely used mechanism in the industry since a four-bar is easy to construct
and maintain and in most of the cases exact preeision at many points is not required.

. Path generation When a point on the coupler or the floating link of a mechanism is to be guided

along a prescribed path, it is said to be a path generation problem. This guidance of the path of the
point may or may not be coordinated with the movement of the input link and is generally called with
prescribed timing or without prescribed timing.

Motion generation In this 1ype, a mechanism is designed to guide a rigid body in a prescribed path,
This rigid body is considered to be the coupler or the floating link of a mechanism.

1f the above tasks are to be accomplished at fewer positions, it is simple to design a mechanism. However,

when

it is Tequired to synthesize a mechanism to satisfy the input and the output links at larger number of

positions, only an approximated solution can be obtained giving least deviation from the specified positions.
In this chapter, both graphical as well as analytical methods to design a four-link mechanism and a slider-
crank mechanism are being discussed.

If it is desired to guide a body or link in a mechanism from one position to another, the task can easily be

PART A: GRAPHICAL METHODS

accomplished by simple rotation of the body about a point known as the pole. In Fig. 5.1, a link B,C, is
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shown to move to another position o] a1’
B,(, by rotating it about the pole P,
This pole is easily found graphically .
by joining the midnormals of any two o —-——3PCy
corresponding points on the link such
as BB, and C|C,. If the pole point /
happens to fall off the frame of the 213
machine, two fixed pivots, one each
anywhere along the two midnormals
will serve the purpose. In the figure, A4
and B are taken to be the fixed pivots.
The configuration also happens to be
a four-link mechanism ABCD in two
positions AB,C,D and A4B,C,D in
which the coupler link BC has moved
from the position B,C, 10 B,C,. The
input link A8 and the output link
DC have moved through angles 8,
and ¢, respectively in the clockwise _
direction (Fig. 5.1). Eg. 53
Thus, a pole P, of the coupler link

BCis its centre of rotation with respect to the fixed link for the motion of the coupler from B\C, to B,C,. Each
point on the link BC describes a circular arc with centre at the pole P,,. Thus, a line Joining the two positions
of a point on the link is a chord of the circle and the midnormal {perpendicular bisector) of the chord passes
through the centre of rotation P|,. B and C are also two points on the link BC. B moves from B, to B, while
C from C, to C,. Therefore, B,B, and C,C, are the chords of the two circles and their midnormals b;and ¢}y
also pass through or intersect at the centre of their rotation, i.e., at P, 7

\/

P2

Properties of Pole Point

l. As AB, = AB,, the midnormal b, of B, B, passes through the fixed pivot 4. Similarly, the midnormal
of C,C, passes through pivot D. :
2. The coupler link BC is rotated about Py, from the position 8,C| to 8,C,,
A B\PCy = A ByP G
L2+L3+ 21 =L1+ L4+ /25
.e., angle subtended by B|C, at P, = angle subtended by 8,C, at P,
or the angle subtended by BC at P,, in two positions is the same.
3 From(2), L2+ 43+ L1 =41+ 24+ /5
or LAV L3=L4+ /L5
Le., BB, and C,C, subtend equal angles at P,,.
4. Py, lies on the midnormal of B8,B,,

£2=2/3
Similarly, £4 = £5
5. LA+ L3=L4+ L5

But £2= /3 and £4= 135,
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2= /4

and £L3=/15

i.e.. the input and the output links subtend equal angles at Py, in their corresponding positions.
6. L2+ 23+ 21 =L1+ 24+ L5

= L1+ 24+ L3 (£3=15)

i.e., the angle subtended by the coupler link is equal to that subtended by the fixed pivots A and D.
7. The triangle B,P,,C| moves as one link about P,, to the position 8,P,,C,,

Angular displacement of coupler B,C, = Angular displacement of £;,C; = Angular displacement of P,53,

i.c., By= L4+ L5222+ 23
* 82 “'RELATIVE POLE
A pole of a moving link is the Co

centre of its rotation with respect
to a fixed link. However. if the
rotation of the link is considered
relative to another moving
link, the pole is known as the
relative pole. The relative pole
can be found by fixing the link
of reference and observing the
motion of the other link in the
reverse direction.

Forthe four-link mechanism
of Fig. 5.2, the pole of BC F12
relative to 4B 1s at th.e pivot B. %i‘ig. 5%
The pole of DC relative to A8 '
can be found as follows:

Let 8, = angle of rotation of 48 (clockwise)

©,, = angle of rotation of DC (clockwise)
Make the following constructions:
1. Assume A and B as the fixed pivots and rotate AD, about 4 through angie 8,, in the counter-clockwise '
direction {opposite to the direction of rotation of 48). Let 1, be the new position after the rolation of
AD (AB fixed). .
2. Locate the point C, by drawing arcs with centres 8 and [, and radii equal to BC| and D, C, respectively.
Then ABC,D, is known as the inversion of ABC, D).

3. Draw midnormals of DD, and €,C, which pass through 4 and B and intersect at R, which is the

required relative pole.

Now (@,» — 8,,) = Angic of rotation of the output link 2C refative to the input link 4B.

This angle is negative if DC > A8 and is positive if DC < AB.

Angular displacement of R D, = angular displacerent ot £,C,

[Refer Sec. 5.2 (7)]
ZD\R Dy = - (L, — £6,3) (assuming DC > AB)

or 2LV =— (L~ L6,y
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1
or /—’12*5(‘4%2 —Z61y)
INAARLD,  Ld=21+ 22
l 1
or 519,3 2—5(4@12 - LB+ L3

1 1
=—=/ + =26+ 23
2 P2 5 < b

l
43: _4 *
or 2 Oz

(£2=213)

The conclusion, just arrived, provides a method to locate the pole of the output link DC relative to the

mput link AR.

Procedure

l. Join 4 and £, the centres of the pivots,

2. Rotate AD about A through an angle 8,./2 in a dircction opposite to that of 48,

3. Again rotate A0 about D through an angle @,,/2 in a direction opposite to that of DC. The point of
intersection of the two positions of 40 after rotation about 4 and D, is the required relative pole R,
The angles subtended by DD, and (', (; at R, arc the same,

ie., LINR Dy = ZC\R Gy
or 2 ZD\RpA = 2 £C,R 5B
or LD\RpA = LOR B

Thus, it 1s also concluded that the angle subtended by
the fixed pivots (4 and D) at the refative pole is equal to
the angle subtended by the coupler BC (Refcr Sec. 5.1
also).

Now, consider the slider-crank mechamsm of Fig, 5.3,
In this. if C reciprocates through a horizontal distance s,
its centre of rotation will lie at infinity on a vertical line
where the point £ can also be assurned to lic. Then 4D
will also be a vertical line through 4. Rotatc 41} about
A through 8,,/2 in the counter-clockwise direction as
usual. Rotating 40 about D through @52 would mean a
vertical line towards the left of A, at a distance of 5/2, The
mtersection of the two lines locates R,,.

Thus, the procedure to locate the relative pole of a
slider-crank mechanism will be as under:

Ry2

“Fig. 53‘”’gé

. Draw two parallel lines /| and /, at a distance e apart {if there is an eccentricity).
2. Select a line segment AE of length 522 on the line 4, such that £ is measured in a direction opposite to

the motion of the slider.

3. At 4 and £ draw perpendicular lincs p, and p, respectively to the line /,
4. Make the angle 8,,/2 at the point 4 with the line p| in a direction opposite to the rotation of the input

link.

The intersection of this line with the line p, locates the relative pole R ,.
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53 FUNCTION GENERATION BY RELATIVE POLE METHOD

The problems of function generation
for two and three accuracy positions
are easily solved by the relative pole
method as discussed below:

(a) Four-link Mechanisms

Two-position synthesis Let for a
four-link mechanism, the positions
of the pivots 4 and D along with the
angular displacements 8, (angle
between 8, and 6,) and @, (angle
between ¢ and @) of the driver
and the driven links respectively be
known,

Riz

iFig. 544

To design the mechanism (Fig. 5.4), first locate the relative pole R,, by the procedure given in Sec. 5.2.
Now, angle subtended by the coupler BC at R,
= angle subtended by the fixed pivots 4 and D at R,

= l éep
2 2

=2y,

1

5 v (assuming DC > 4B)

Adopt any of the following alternatives to design the required mechanism:
1. At point R ,, construct an angle y, at an arbitrary position. Join any two points on the two arms of
the angle to obtain the coupler link BC of the mechanism. Join 4B and DC to have the driver and the

driven links respectively.

2. Locate the point C arbitrary so that DC is the output link. Construct an angle CR,, Z= 5. Take any point

Bon R,,Z, Join AB and BC.
3. Instead of locating the point
C as above, locate the point

B arbitrary so that AB is the .

input link. Construct an angle
BR,Y = y,,. Take any point
Con R,Y. Join BC and DC.
Then ABCD is the required four-
tink mechanism.

Three-position synthesis If
instead of one angular displacement
of the input and of the output link,
two displacements of the input (8,
and ;) and two of the output (g,

-~
C. -
o

1 ¢2f2
” /y: g -
A 12// ,;3:/ /,,’
£ -
P 42\3’ -
A7 wa

A3 ) )

UiFig. 55

and @,;) are known, find R, and R, as shown in Fig. 5.5.

Let y;; and y45 = angles made by the fixed link at R, and R, respectively.

Construct the angles y,, and ; al the points R, and R, , respectively in arbitrary positions such that the
arms of the angles interscct at B and C in convenient positions.
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(b} Slider-crank Mechanism

Two-position synthesis For a slider-crank mechanism,

fet 8, = angular displacement of tnput  link
(£between 8, and 8,)
s;2 = lincar displacement of the slider

€ = eccentricity

Draw two parallel lines /, and /, at a distance e
apart. Locate the relative pole R, as shown in Fig.
5.6. At the point R., construct an angle equal to 8,2
(7 @12 = 0,9 ~ 6, /2) inan arbitrary (but convenient)
position. The intersection of an arm of this angle with
the line !, provides the position of the slider. Select an
arbitrary point B on the other arm of the angle so that ABC
is the required slider-crank mechanism.

Three-position synthesis  If two displacements of the
input link (6,, and 8,3} and the slider (s,, and s,,) are
known, find R, and R, ; as shown in Fig. 5.7.

(¢
Now, -f = angle made by the fixed link at R,

6, .
f = angle made by the fixed link at R,
Therefore, consiruct angle 6,,/2 at R, in an arbitrary
position locating the point . Draw the angle 8,4/2 at R,
with an arm along R|,C. Intersection of the two arms (not
through ) of the two angles locates the point 8.

Example 5.1  Design a four-link mechanism
to coordinate three positions
of the input and the outpus
links  for the jfollowing

angular displacements:
8, = 60° P2 = 30°
63 = 90° @3 =50°

Wiz = B12/2 4

k]

A

Rz

(b}
‘Fig. 5.8

Sefition  The procedure is as follows:
1.

Locate suitable positions of the ground
pivots 4 and D).

Locate the relative pole R, by rotating
AD about A through an angle 30° (=6,,/2)
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[Fig. 5.8{(a}] and about D through an angle
15° (= ¢,,/2) taking both counter-clockwise.
The point of intersection of the two positions
of AD after rotation about 4 and D is the
relative pole R,. Similarty, locate R, ;.

. At point R,,, construct an angle of 15°

(= 6, /2 — ¢3/2) at an arbitrary suitable
position. At the point R,,, construct an angle
of 20° (= 8,3 /2 — ,3/2) in such a way that
the intersection of its two arms with that of
the arms of the previous angle locates poinis
8 and C at suitable positions.

4, Join AB, BC and CD.

Then.

ABCD is the required four-link

mechanism. Figure 3.8b shows the same in three
positions.

Example 5.2

Design a  slider-crank
mechanism fo coordinate
three posifons of the input
link and the slider for the
Jfollowing angular and linear

.ﬁfspiacements of the input link and the slider

respectively:
9}2 = 400 312 = ]80 mm
Gy = 120° 513 = 300 mm

~ Take eccentricity of the slider as 20 mm,

(a)

Solution

{b)

{Fig. 5.9

The required slider-crank mechanism

can be designed as follows:

1.

2

5.
Then,

Draw two parallel lines /, and /, 20 mm apart
from each other [Fig, 5.9(a)].

. Take an arbitrary point 4 on the line /, for

the fixed ground pivot.

. Locate the relative pole R, by rotating a

vertical line through A4 about A through an
angle of 20° (=8,,/2) counter-clockwise and
drawing a vertical line at 90 mm (= 5,,/2)
to the left of 4. Similarly, locate the relative
pole R,; by rotating vertical line through
A about A through an angle 60° (=6,,/2)
counter-clockwise and drawing a vertical
line at 150 mm (= 5,,/2) to the left of A.

At point Ry, construct an angle of 20°
(= 8)3/2) and at point R|;, construct an
angle of 60° (= 6,, /2) 1n such a wuy that the
intersection of their arms locate the points B
and (" {on /,) at suitable positions.

Join AB and BC.
ABC is the

required  slider-crank

mechanism, Figure 5.9(b) shows the same in three
positions.
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‘5.4 INVERSION METHOD

Basically, the relative pole method is derived from the kinematic
inversion principle. But there is no visible inversion of the planes
during the solution of the problems. In the inversion method, there
is direct use of the concept of inversion.

A four-link mecchanism ABCD is shown in two positions
AB\C\D and 4B8,C,D in Fig. 5.10. The input and the output links
AB and DC are moved through angles 8,, and @, respectively in
the clockwise direction.

Rotate 4D through 8, in a direction opposile to the rotation
of AB and get the inversion AB,C,” I’. It can bc observed that
the configuration AB,C,D has been rotated about 4 through an
angle 8, in the counter-clockwise direction to obtain the figure
AR CY'1Y. Make the following observations:

1. Point C, is rotated through an angle ;- in the counter-
clockwise dircction with the centre at 4.

2. (7, lies on a curve with the centre of rotation at B,.
Therefore, B, lies on the midnormal of C,(7,.

85 FUNCTION GENERATION BY INVERSION METHOD

The problems of function generation for two, three and four accuracy positions can be solved by the inversion
method as follows:

{(a) Four-Link Mechanism

Two-position synthesis Let the distance between
the fixed pivots 4 and D, and the angles 8, and ¢, be
known. To design the mechanism, proceed as tollows:

1. Draw a line segment 4D of length equal to the
distance between the fixed pivots (Fig. 5.11).

2. At point D, construct an angle (,0C, = ¢,
(clockwise) at an arbitrary position, selecting a
suitable cutput crank length DC, = DC,.

3. Rotate point C, in the counter-clockwise
direction through an angle 8,, with 4 as centre
and obtain the point Cy".

4, Join C,C," and draw its midnormal. Select a
suitable point B, on it.

ABC\D is the required four-link mechanism in
which B,C, is the coupler.

Three-position  synthesis If two  angular
displacements of the input link (8, and &;,) and two
of the output link (@, and @,,) are known, proceed as below:
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. Draw a line scgment 4D of length

equal to the distance between the fixed
pivots (Fig. 5.12).

. Choose some suitable length of the

output link DC. Draw it at some
sullable angle with the fixed link AD
and locate its three positions DC,, DC,
and DC5 as its angular displacements
are known.

. Find the points (7, and 'y after

rotating AC, and AC; about 4 through
angles 8, and 8,; respectively in the
counter-clockwise direction.

. Intersection of the midnormals of

C, 'y and C, 'y locates the point B
Then, AB,C,D is the required four-link
mechanism.

The mechanism could also have been obtained by drawing the input link 48 in three positions and rotating
DB, and DB, through angles @,, and ¢, ; respectively in the counter-clockwise dircction with D as centre,

Four-position synthesis

I1"a four-link mechanism is 1o be designed for four precision positions of the

input and four positions of the output link. it can be designed by point-position reduction method. In this
method, the point B, is chosen at the relative pele R, with an assumed position of fixed link 4D. The
corresponding positions of B,, B; and 8, are easily located establishing the input link in four positions. Then
by using the inversion method, the mechanism can be designed. The method is given below in brief:

. Draw the input link 48 in four

. Find the points 8’y B’;and &', after

. Interscction of the mudnormals of

pole by rotating A5 about 4 through
angle 8,2 and about [ through
an angle ¢,»2 both in counter-
clockwise direction, Take this as the
point &,.

positions A8, AB,, AB, and 485,
as its angular displacements are
known.

rotating DB,, DB, and DB, about
D through angles ¢,.. ¢y and ¢y,
respectively in  the counter-
clockwise dircction. It may be
noted that the location of &', is
situated at B,.

BB and BB, locates the point C.

Then ABCD is  the  reguired
mechanism.

. Draw a line segment AD of suitable length to be the distance between the fixed pivots (Fig. 5.13).
2. Locate the position of the relative

<Fig. 5.137
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(b) Slider-Crank Mechanism Cs

Two-positionsynthesis Iftheangulardisplacement
of the input link 8, and the linear displacement of
the stider s, along with the cccentricity e are known, B,
the required slider-crank mechanism is obtained
as follows:
1. Draw two parallel lines /, and /, at a distance
e apart (Fig. 5.14). A, - - - h
2. Take an arbitrary point 4 on the line /, for the .?:Fig. 5.14;
fixed pivot and two points C| and C, on the R "
line 7, a distance s, apart for the initial and the final positions of the slider.
3. Rotate the point C, about 4 through an angle 8,, in the
counter-clockwise direction to obtain the point C7,.
4. Join C,("; and draw its midnormal »,. Take an arbitrary
but convenient point 8 on it.
ABC| is the required slider-crank mechanism.

Three-position synthesis For three positions of the input
link and three positions of the slider, find *; and C’; as usual.
Then midnormal of C,C7, and C,C’; intersect at the point 8
(Fig.5.15).

Four-position synthesis A four-position synthesis can be
done in the same way as in case of a four-link mechanism.

Example 5.3  Design a four-link mechanism
to coordinate three positions
of the input and of the output
links for the following angular
displacements by inversion method.

By, = 35° ¢y = 50°

8;; = 80° P13 = 80°

A- FFITTFFITFTrTTrT D
(b)
‘Fig. 5.16

Solution  For the given two angular displacements of
the input and the output links, proceed as given below:

1. Draw a line segment AD of suitable length to
represent the fixed link [Fig. 5.16(a)].

2. Choose a suitable length of the output link
DC and a suitable location of C,. Then
locate the positions of (', and C; by drawing
the cutput link DC in three positions DC,,
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DC; and DC, as its angular displacements
arc known.

3. Find the points (75 and (7 after rotating 4C,
and AC; about 4 through angles ¢, and 6,
respectively in the counterclockwise direction.

4. Intersection of the midnormals of C| (7, and
C, ' tocates the point B,.

Then ABC\D 15 the required four-link
mechanism. Figure 5.16(b) shows the mechanism in
the required three positions. The mechanism could
also have been obtained by drawing the input link
AB in three positions as stated earlier.

Example54  Design  a  slider-crank
mechanisin 1o coardinate
three positions of the input and
of the slider for the following
data by inveision method:

8,, = 30° 8§15 = 40 mm

B, = 60° &3 = 96 mm
Eccentricity = 20 mm

Solution  For the given two angular displacements
of the input link and the two linear displacements
of the shider along with the eccentricity e, the
requircd shider-crank mechanism is obtained as
follows:

. Draw two parallel lines /; and /, at a distance
ol 20 mm apart [Fig. 5.17(a)].

2. Tuke an arbitrary peoint 4 on the line /, for
the fixed pivot and three points C, . C, and
C, on the line /;, at distances 40 mm and
96 mm apart for the initia! and subsequent
positions of the slider.

3. Rutate the point (', about A through an angle
307 in the counter-clockwise direction to
vbtain the point (7. Similarly, rotate the
point (' about A through an angle 60° to
obtam the point 'y
4. Join G, and CC7; and draw their
midnormals 1o intersect at pomnt 5.
Then ABC, is the required slider-crank
mechanism. Figure 5.17(b}) shows thc mechanism in

the required three posiiions.

Example 5.5  Design a four-link mechanism
to coordinate four positions
of the input and the output
links jor the following

angtilar displacements of the

input link and the output link respectively:

6, = 30° @y = 30°
65 = 80° @3 = 80°
8,y = 100° @ =120°

Soliwtion Make the following construction:

1. Draw a line segment 40} of suitable length
to be the distance between the fixed pivots
[Fig. 5.18(a)].

Locate the position of the relative pole
by rotating AD about A through angle 25°
(= 8,,2) and about [} through an anglc 15°
{~ 1,./2y both in counter-clockwise direetion.
Tuake this as point 8,.

v
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3. Draw the input link A8 in four positions
AB|, AB, AB, and AB, as ius angular
displacements are known.

Fig. 518?_

4. Locate the points B, B’;and 87, by rotating
DB,, DB, and DB, about I through angles
@,2. 9|, and @, respectively in the counter-
clockwise direction such that the location of
Byisai By,
5. Imersection of the midnormals of 8,87, and
B'.B’, locates the point C.
Then AB,CD is the required mechanism. Figure
5.18(b) shows the mechanism in the required four
positions.

.77 5.6 PATH GENERATION

The problem may be of designing the mechanism without or with prescribed timing, i.e., the guidance
of the point on the coupler may or may not be coordinated with the movement of the input link. To
design such a mechanism, the method of inversion of mechanisms is used by fixing the coupler and
releasing the fixed link. To understand the inversion method, consider a four-link mechanism as shown in
Fig. 5.19(a) in two positions 4,8,C\D| and 4,8,C,D,. E is an offset point on the coupler which
assumes the location E, in the second position. In Fig. 5.19(b), the inversion of the mechanism i
shown by fixing the coupler B,C, and releasing the fixed link so that the quadrilateral 4,8,(,D of figure
ia) in exactly the same as the quadrilateral 4.8,C D, of figure (b). It can be done by taking 24, 8,C,
= /4,8,C,. Now if triangles B,E,D, and B,E|D, are marked in the two figures, they must be congruent. It
can be observed that the point C, is the centre of curvature of the arc passing through D, and D, and thus lies
on the right bisector of D D,.
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(a) Without prescribed timing In this case,
three positions of the coupler point (£,, £, E3)
are known. The procedure of designing such a
mechanism is as follows:

1. Select suitable locations of 4, and [,
of the fixed link with respect to the
positions of the coupler point /7, £, and
£, (Fig. 5.20).

2. Choose a suitable length of the input
tink 4,8,. Mark the first position of B,
at a suitable position. As the {engths of
the links A B, and B £ are to be samc
in all positions, locate the positions
of B, and B,. Thus, the input link in
three positions A8, 48, and AB; is
established. Now, the task of obtaining
the point C; remains which is done
by the inversion method as discussed
above by fixing the coupier in the first position.

3. Construct AE,B,D, = AE\B D, and AE\B\D, = AE\B,D,.
4. The centre of the arc through D). D, and D is the crank pin ;. Draw midnormals of D, D, and D,D;,

The intersection ot the two locations is the point ).
Thus, A4,8,C, D, is the required four-link mechanism with the coupler point E,.

{(b) With prescribed timing  For two angular displacements 8,
and 8;; and three positions of the coupler point (£, E,, £,). the
choice of the input link is not arbitrary. To design such a mechanism,
proceed as follows (Fig. 5.21).

. Select suitable locations of 4| and D, of the fixed link with
respect to the positions of the coupler point (£, E,, F;).

2. Rotate AE, through an angle 8,, in the counter-clockwise
direction with 4 as centre and obtain the point £,, Similatly,
rotate AE, through an angle 0, in the counter-clockwise
direction with centre A and obtain the point £,

3. The centre of the arc through £, £7: and £”, is the crank pin
B,. To obtain it, draw midnormals of E £, and E&’;. the
intersection of these provides the location of B,.

4. The rest of the procedure 15 as discussed above for the case
of without prescribed timing, i.e., locating the positions of
B, and B, and then constructing AF,B.D, = AE | B,D- and
AEBD =AEBD,.
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Example 5.6  Design a four-link mechanism
to coordinate the following
three positions of the coupler
. point. The positions are given
with respect to coordinate axes:

r;=55mm a; = 75°
ry =70 mm a, = 50°
ry=73mm o; = 40°

The angular displacements of the input link are
fo be 8, = 30° and 8,;, = 70°.

E2
&
JSS «0@
&
&
&
4B
75°
50°
40°

(d)
FIS 5‘22:.;

Solution Tt is the case of path generation with

prescribed timing. The procedure is given below:

1. Locate the three coupler points £, £, and £,
as shown in Fig. 5.22(a).

2. Select a suitable location of the pivot 4, of
the fixed link with respect to the positions of

A1 (b) the coupler points [Fig. 3.22(b)].

3. Rotate 4,F, through an angle 30° (=6,,) in
the counter-clockwise direction with 4, as
centre and obtain the point £,. Similarly,
rotate AE; through an angle 70° (=8,,) in the
counter-clockwise direction with centre A4
and obtain the point £';.
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4. Draw midnormals of E,£”, and EE';. the 7. Draw midnormals of DD, and D,D,. The
intersection locates the point 3|, intersection of the two locates the point C,.

5. Draw the input link in three positions A5, Thus, 4,3,C.D; is the required four-
A8y and AB;. link mechanism with the coupler point £,. Figure

6. Selectsuitable location of the pivot 17, of the  5.22(d) shows the required mechanism in three
fixed link. Construct AE,B,D, = AE B D,  positions.

Let a rigid body be guided through three
prescribed positions. It is required to design a
four-link mechanism of which this rigid bedy
will be a coupler. The rigid body is shown in
Fig. 5.23 in three given positions. To find the
lengths of the four links of the mechanism,
proceed as follows:

1. Take any two arbitrary suitable points
B and C on the rigid body and locate
these on the body in three positions. It is
assumed that the point B,. 8, B, and £,
£, and E; are non-collinear. ;
Find the centre 4 of the circle passing i
through B,, B,, and B,. Similarly, let the i
centre of the circle passing through C,
C,and Cy be D. Arg’
3. Jein 4B, 8/C and C\D.

Then, AB,C\D is the required mechanism
which takes the coupler B8,C, through B,C, and
B,(,.

In the above case of motion generation, the choice of the ground pivots is not with the designer. Many
times, it becomes necessary to fix the locations of these pivots beforehand due 10 constraint of space. Such
type of problem can also be solved by the inversion method as discussed in Section 5.6. In such cases,
proceed as follows;

o]

‘Fig.5.2%

VT
PeFo T oo IT T




Graphical and Computer-Aided Synthesis of Mechanisms 159%

1. Take any two arbitrary points £ and £ on the rigid body and locate these on the body in three positions
[Fig. 5.24(a)).

2. Let 4, and D, be the locations of the ground pivots [Fig. 5.24(b)).

3. Construct AE,F,Dy = AE\F\D, and AEF,D, = AE|F|D,.

4. The centre of the arc through D, 2, and D; is the crank pin €. To iocate it, draw midnormals of DD
and D,3;. The intersection of the two is the pivot point ' on the rigid body or the coupler.

5. Construct AEF34, = AE\F\ 4, and AEF A4, = AE | F A, (Fig. 5.24(c)].

6. The centre of the arc through 4, 4 and 4, is the crank pin 8,. Draw midnormals of 4,4, and A4
The intersection of the two locates the pivot point A; on the rigid body or coupler.

Then 4,B,C,D, is the required mechanism which takes the coupler 8,£, F,C, through BoES FoCyand B E,
F,C, [Fig. 5.24(d)}.

PART B: COMPUTER-AIDED SYNTHESIS OF MECHANISMS

.. FUNCTION GENERATION

sheEn Ak

A four-link mechanism shown in Fig. 5.25 is in equilibrium. Let ¢, b, ¢
and d be the magnitudes of the links 48, BC, C and D4 respectively.
6, B and gare the angles of 4B, BC and DC respectively with the X-axis
{taken along 4D). 4D is the fixed link. 4B and DC are the input and

output links respectivety of the mechanism.
Considering the links o be vectors, displacement along the A-axis

acos 8+ bcos B=d+ccos ¢ (The equation is valid for < ¢ more £
thangogalso‘) A i /////d///// ////D
or hceosf=ccos@-acos 8+d i .
or  (hcos B ={(ccos p—acos O+ dy -Fig. 5.28.
=¢? cos? @+ a’cos’ O+ o - 2ac cos 6 cos @ — 2ud cos O + 2ed cos Q i)
Displacement along Y-axis
asin 8+ bsin f=csin ¢

or bsinB=csing@-asin@
or (b sin §)% = (c sin @ ~ a sin B
= c?sin’ @ + &* sin’ @— 2ac sin 8 sin @ (ii)

Adding (i) and (ii),

B = +d +d? - 2ac cos Ocos @~ 2ad cos B+ 2ed cos ¢ - 2ac sin Osin @
or 2¢d cosp— 2ad cos® + a* - b7+ ¢ +d® = 2ac{cosf cos @ + sin@ sin @)
Dividing throughout by 2ac,

a -brt +d?

icosrp—ﬂcos(9+ ———— = cos(8 - Py =cosfp - B)
u c 2ac

This is known as Freudenstein’s equation and can be written as,

kicosg+ k, cos@+ ky = cos{8— @) (3.
where
7 52,2 2
kltg_;kzz_(_i.; and k.g:_(.{.__b_j._(;d
a c Zac
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Let the input and the output are related by some function such as ¥ = f{x) and for the specified positions
8,6, 6, = three positions of input link (given)
and @, @ @, = three positions of output link (given)
1t is required to find the values of ¢, b, ¢ and d to form a four-link mechanism giving the prescribed
motions of the input and the output links.
Equation (5.1) can be written as,
kicosg, +k;cos 8, +h;=cos (8, - @)
kicosgy + kycos 8, +k;=cos (8, — @)
kicosg, + ks cos 8y + ky=cos (0, — ¢y
k,, ky, and k; can be evaluated by Gaussian elimination method or by the Cramer’s rule.
cosg, cos@
A= |cosg, costh |

cosp, cosfy |

cos( —¢) cosf |1

A, = [c0s(6; — ;) cosB; |
cos{f, — ;) cosfy 1
coseg,  cos(B —o) 1

A, = [cosQy  cos(B —@a) 1
cosp, cos(B; -gy) |
cos¢y cosB  cos(f —¢y)

Ay = [cos@, cosb, cos(f; @)

cosp, cosf  cos(B; — ;)

k. k, and k, are given by,

A
ki=ﬁ; k_,:.é..;_; k';:_s
A A TA
Knowing &, &, and &;, the values of a. b, ¢ and & can be computed from the relations
d d b+ +d’
hed geod g ogobrcrd
7 ¢ 2ac

Value of either g or d can be assumed to be unity to get the proportionate values of other parameters.

#include<stdio.h>

#include<conia.h>

#include<math.h>

vold main ()

{
float a,b,c.pl,pZ,p3,tl,t2,t3,t12,th3,al,az,a3,del,
rad,phl,ph2,ph3,dell,del2,del3;
cirscri);
printf {(*enter values of thl,thZ,th3,phl,phz, phi;n”);
scanf ("$fSf3fR£8E3£7, &8l &th2, &th3, &phl, sph?, sph3);
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rad=4*atan(l)/180;

pl=cos(phl*rad);

pZ=cos {ph2*rad) ;

p3=cos (ph3*rad);

tl=cos{thl*rad)

tZ2=cos{th2*rad);

t3=cos (th3*rad};

al=cos{{thl-phl) *rad) ;

aZ=cos ({th2-ph2)*rad);

a3=cos{(th3-ph3}*rad) ;

del=pl*{t2—t3)+tl*(p3—92]+[pE*tB—pB*tZ);

dell=al*(t2-t3}+tl*(aB-a2J‘{a2*t3—a3*t2):

delZ=pl*{a2—aB)+al*(p3-p2)T(p2*a3—p3*a2];

de13=pl*(t2*a3~t3*a2}+:1*{a2*p3—a3*p2}+a;*(p2*t3p3*t2};

a=del/dell;

c=—del/del2;
b=pow({a*a+c*c+l—2*a*c*delEfdel),.5};

printf(* a oz dLn);

printf (™%6.2f %6.2f 2€.2f 4621 “n”,a,b, o, L.00);

getchi);
]

?_Fig. 5.26.

Figure 5.26 shows a program in C for solving such a problem. The input variables are
thl, th2, th3 Angular displacements of the input Iink (dcgrees)
phl, ph2, ph3 Angular displacements of the output link (degrees)
The output variables are
a, b, ¢, @ Ratio of magnitudes of the links 48, BC. CD and AD respectively.

Least-square Technique

The above synthesis technique is used to synthesize a mechanism where three finitely separated positions of
the input and the output links are known. It is obscrved that a four-link mechanism can be designed precisely
up to five positions of the input and the output links, provided @ and ¢ arc measured from some arbitrary
reference. In such cases, the synthesis cquations become non-linear and have to be solved by using other
means than the Cramer’s rule.

It is not possible to design a mechanism for more than five positions of the input and the output links.
However, it is possible to design a mechanism which gives least deviation from the specificd positions
and provides the average performance. To achieve this, an approximated solution of the problem is sought
which gives the least error. A method known as the least-square technique is useful in synthesizing such a
mechanism.

Considering Freudenstein’s equation,

kicosg, + kycosg, + ky - cos(8,— ) =0

Owing to error, this equation is not satisfied. Its LHS will have seme error value. As this can be positive
or negative, its square is taken and summed up for n values of & and ¢ and defining.

S= z [k cos @; +k; cos 8, + k; — cost6, —qp,-)f

=1



%ﬁz Theory of Machines

Conditions lor this to be minimum are,

EA) as as
22 -0, — =0and — = 0
ok ok e
ic. Y 20k, cos @, +k; cos B, + &y — cos(8; — ¢,)]cos @, = 0
i=l
or
) E ky cos® @, + ks Zcos g cos @, + J’@Z COs ¢ =2 cos(f; —¢,)cos Q. (5.2)
Similarly,

kS cosp,cos8; +k, 3 cos” 6, +4; > cos§; =) cos(B; —¢;)cos 6. {5.3)
and k Z cos @, + ky Z cos@; +k, E 1 :2 cos(B; — ;) (5-4)

These are three simultaneous linear, homogenous equations in three unknowns &), k,. and k3. These can be
solved by using Cramer’s rule or other means.

Figure 5.27 shows a program to find the ratio of different links using the least-square technique. The input
variabies are

#include<stdic.h»

#include<conio.h>

#include<math.h>

vold main ()

{
int i,k;
float a,bl,b2,b3,tt,b,c,d,pl,p2,p3,t1,t2,t3, thl, th2,
th3,al,a?,ai,del, rad,phl,phz,phl,dell,del?,del3;
float th[:0],phi10];
clrscr{);

printf (Menter i the number of positicnsin”};
scanf (M&d”, &1} ;
printf (“enter 1 values of thii] and ph{iiin”};
for{k=0;k<i;k++) gecanl{™%f", ath[k]);
for (k=0;k<i; ktt) scanf {“&f”, aphk]);
rad=4*atan (1) /1E0;
for{k=0;k<i; k+4)
{
pl-pl-powi{cosi{phik]*rad},2);
pZ=p2+{zos{th[kl*rad))*{cos{phl[k) *rad)):
pi=p3t+cos (ph[k] *rad);
tlep2;
t2=t2+{cos{th(x)*rad) * {zos{th[k:*rad};
ti=tit+cos{th[x) *rad);
bl=p3;
"b2=t3;
b3-1i;
tt=cos({th(x)-phlk)}*rad);
al=al+tt*cosiphlk]*rad);
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al?=aZ+tt*cos(thik]*rad);
ad=ai+tt;
1

del=pl* {t27b3-t3*p2)+ti* (b2*p3-b3*p2)+bLl* (p2*t3-p3*t2);
dell=al*{t2*b3-c3*b2)+rl* (b2*a3-b3*aZ)+hl*{a2*c3-a3*t2});
delZ=pl*{a2*b3-al3*b2)+al* (b2*p3-b3*p2)+bl* (p2*al-p3*a2);
delld=pl* (£2*a3-c3*aZ)+tl1* (aZ%p3-ald3*pZ)+tal* (p2*c3-p3*t2);
a=del/dell;
c=-del/del2;
b=sqgrt(a*atc*c+l-2*a*c*dell/de ) ;

printf(“ a b o dhn®y;
printf({“%6.2f %6.2f %6.2f %56.2f \n”,a,b,c,1.00);
getchi); o .
Fig. 5.27
i Number of specified positions
th{j) Angular displacements of the input link A8 for j = | to i (in degrees)
rhij) Angular displacements of the output link 2 forj = | to / (in degrees)
Example 5.7  Design aﬁw—lf:k mechqn‘ism c0s35° cos20° cos(20° — 359
to coordinate three positions _ o . o gco
of the input and the output A; ={cos45° cos35° cos(35°-45°)
§ finks as follows: cos60° cosS50° cos(50° —60°)
8, = 20°, @, = 35°
8, = 35° ¢, = 45° A = cos35°(cos 35° — cos 50°) + cos 20°(cos
8, = 50° @, = 60° : 60° — cos 45°) + (cos 45° x cos 50°
— cos 60° % cos 35°)
Solution ' =-0.005 204
o o _ . o Similarly, A, = -0.00333
k cos 35° + k, cos 20° -+ ky = cos (20° - 35°) y A; = 0.003 9106 )
k, €08 45° + k, cos 35° + ky = 008 (35° - 45°) Ay = —00059735
£y cos 60° + &,y cos 30° + &y = cos (50° - 607) Assuming d =1,
Now, AL -0.00333 1
.0535°  cos 20° ky=—t=——""—=—ora=156
cos35° cos20° 1 T A T 20005204 a '@
cos 45° cos35° | A, 0.0039106 1
A= o - k=== — = ore=133
cos60° cos50° |1 S A =0.005204 c
b o AL 200059735 1.56° —b* +1.337 +1°
c0s(20° - 35°) cos20° 1 YT AT —0.005204 2%1.56%1.33
A = cos(35°—-45°) cos35° i or h=066
' cos(50°-60°) cos50° 1 Thus. a, b, ¢ and d are 1.56, 0.66, 1.33 and 1.00
respectively.
cos35° cos(20°-135°) 1 The input and the output using the program of
ig. 5. 3 in Fig. 5.28.
lcos45° cos(35°- 45%) 1 Fl}, 5.26 have been shown in Fig, 5.28
A, = Enter values of thl, th2, th3, phl, ph2, ph3:
cos 60° COS(SOO - 600) i 20 3% 50 35 45 &0
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a b & d
1.56 0.66 1.33 1.00

W 525

The mechanism is shown in Fig. 5.29.

Design a four-link mechanism
when the motions of the
input and the owtpur links
. are governed by a function

y =x* and x varies from 0 to 2 with an interval
of 1. Assume @ to vary from 50° 1o 150° and ¢
Sfrom 80° 10 160°. o

Solution The angular displacement of the input
link is governed by x whereas that of the output link,

by ».

Example 5.8

&

[ L L L T,

A X; Xf

Let subscripts s, f and j indicate the start, final
and any value in the range.
Range of x = x,— x, = 2 — 0 = 2 and thus
x =0 xy=2
The corresponding values of v are according to
function, y = x*
Rangeofy =y, -y,=4-~0=4and;
n=0 y=1 y=4
Range of 8= 6,— 6, = 150° - 50° = 100°
Range of ¢ = ¢~ ¢, = 160° - 80° = §0°
Refer Fig. 5.30 which indicates a linear
relationship between x and 8. Thus
6 -8 _x-x

] ¥

x, =L

B, -0, x;-x

or
8,8, A
0.=6+ = (x‘--x:)=9$+—9(.r‘-—x_‘);
Xy =X Ax
100°
Thus, 8= 50°+ x0=50°;
l o
6,= 50°+ (;0 x1=100°;
tn )
6= 50°+ 100 x2=150°
Similarty,
Q- A
¢ =0+ —-f““-* -~y =9+ °9 = vk
¥ ¥ Ay
or @ 80°+§g~x0= 80°;
= 80°+ 82 x1=100°;
@ = B0%+ 82 x 4 = 160°
This can be written in a tabular form:
Position X ¥ 8 [
| 0 0 - 50° 80°
2 1 1 104° 100°
3 2 4 150° 160°

Thus, we have the following equations,

k) cos 80° + &, cos 50° + &; = cos 30°
k| cos 100° + ky cos 100° + k; = cos 0°



ky cos 160° + &, cos 150° + k, = cos 10°
Using Cramer's rule,
A=-0.3850
A =-01052 £ =0273= d
a
. d
A,=0.1079 & =-0280=-2
e

A;=03844 &, =0988 =

) 2ac

which gives

a = 3.66 units

b =1.02 units

¢ =3.57 units
and d =1 unit
Figure 5.31 shows the required mechanism,

B ¢ ¢

Example 5.9

Design a four-link mechanism
when the motions of the
input and the owtput links
are governed by a function y
= 2logy x and x varies from
2 to 4 with an interval of 1. Assume @ to vary
Jrom 30° to 70° and ¢ from 40° to 100°.

Solution Let subscripts s, fand i indicate the start,
final and any value in the range.
Range of x =x, - x.= 4 — 2 =2 and thus

n=2 x=3 x=4

Graphical and Computer-Aided Synthesis of Mechanisms

@ =+t +d?

The corresponding values of y are according to
function, y = 2log,,x

Range of v =YY= (2log,,4)— (2log,42) =

1.204 — 0.602 = (.602
and 2 =0.602; y, =2log,,3
=0954; y,=1204;

Range of 8= 8, - 6, =70° - 30° = 40°

Range of ¢ = ¢, - ¢, = 100° - 40° = 60°

As 8, = 6, =30°nd 8, = ;= 70°, there is no
need of finding them.

8, =86, +-A—9(x,. - x, ) and thus
T Ax

]

4
6,= 30"+ 0

Simtlarly, As @, = @, =40%nd @, = ¥, = 100°,
there is no need of finding them.

x1=50°

< 600 — Q
o,= 40°+ 0.602 {0954 ~-0.602) =75
This can be written in a tabular form also.
Position | x y é Q
1 2 0.602 30° 40°
2 3 0.954 50° 75°
3 4 1.204 70° 100°

Thus, we have the following equations,

ky cos 40° + k, cos 30°+ k3 = cos (-10°)
ky cos 75° + k; cos 50° +ky = cos (-25°)

ky cos 100° + k, cos 70° + k; = cos (-30°)
Using Cramer’s rule,
A =0.0560
A =0.0146 k =0.2607 = i
a
d
A,=-0.0135 by =-0241=-~
¢
Ay =0.0557
2 2 2 2
-b+
k; = 0.995 = a__z_ci'_d__
which gives ac
a = 3.83 units
b=1.14 units
¢ =4.14 units

and o =1 unit
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Figure 5.32 shows the required mechanism. 0.69
o o *20°+050°’20°)Xﬁ:630

It is required to design the mechanism so that
the input and the output links pass through eight
specified positions. It is not possible to design such
a mechanism. However, using the least-square
technique, a mechanism may be devised which gives
the least deviation from the specified positions.

The dimensions of various links are shown in
Fig. 5.33 using the program given in Fig. 5.27,

Enter I the number of specified positicns 8
Enter i walues of th[i] and ph[i]

15 30 45 60 75 90 1065 120

20 63 8% 107 121 132 142 150

a b c d

2.42 0.81 2.37 1.00

Example 510  Design a four-link mechanism
to coordinate the motion of

the input and the owipus links Figure 5.34 shows the required mechanism which
governed by afunctiony = log will give the least deviation from the specified
_ C Xfor0<x<8 Take& =1, positions.
The range for @ is from 15° to 120° whereas for,

@it is from 20° to 150°. -

Solution The angular positions of the input and
the output links are tabulated below:

X y o Y

] 0 15° 20°
2 0.69 30 *63°
3 110 45° 89°
4 1.39 60° 107°
5 .61 75° 121°
6 1.79 90° 132°
7 1.95 1035° 142°
8 2.08 120¢ 150°

SPACING

In function-generation problems, the output is related to the input through a function y = fix) and it is required
to obtain the dimensions of a linkage to satisfy this relationship. In general, a linkage synthesis problem
does not have exact solution over its entire range of travel. However, it is usually possible to design a
linkage which exactly satisfies the desired function at a few chosen positions known as precision or accuracy
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points or positions. 1t is assumed that the design deviates very slightly from the desired function between
the precision positions and that the deviation is within acceptable limit. The difference between the function
prescribed and the function produced by the designed linkage is known as the structural error. For most of
the cases, this error may be about 3 to 4 per cent,

The amount of structural error also depends upon the choice of the precision points. A judicious use
of precision points greatly affects the structural error. Thus, a set of precision points may be selected for
use in the synthesis of the linkage which can minimize the structural error and a fair choice is provided by
Chebychev spacing. For n accuracy positions in the range x, <x <x,, , |, the Chebychev spacing is given by

= Xpp1 H X, xn+l (2" - l)ﬂ:
! 2 2 2n

For example, if it is desired to design a linkage to satisfy the function y = v/x over the range 1< x<3
using three precision positions, then the three values of x are
3+l 3-1 (2-Dn

- cos
2 2 2x3

Xy = Z—COS%:Z

wherei=1,2.3...n

X = :2—(:05%:1.134

X = 2—(:05% = 2.866
And the corresponding values of y, y =1.065 y =1.414; y =1.693

Graphical approach Chebychev spacing of accuracy points can also be found easily by the graphical
method. The method is as follows:
1. Draw a circle of diameter equal to the range Ax (=x,,, ; —x,).
2. Inscribe a regular polygon of 2# sides in the circle such that the two sides of the polygon are
perpendicular to the x-axis.
3. Draw projections of the vertices of the polygon on the x-axis. The perpendiculars intersect the diameter

Ax at the precision points.
30°7-. -4 30°
X4 Xy Xy X1 Xo X3 Xy 111134 12 2.866|]) 3
0.366 ‘o/css
| Ax " | Ax "l I 2 |
X0 X4 Xo Xn+1

(a) {b) {v)

Figure 5.35(a) and (b) shows the graphical method for # =3 and n = 4 respectively. Figure 5.35(c) shows
the construction for the above example.

Example 5.11 Design a four-link mechanism varies from 1 fo 4. Assume 0 to vary from 30° to

v if the motions of the input and 120° and @ from 60° to 130°. The length of the
the output links are governed fixed link is 30 mm. Use Chebychev spmcmg of
by a function y = x'% and x accuracy points.
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Solution
%, = Lt X, Xy - X, cos (2i-DHrm
2 2 2n
-1 -
x|:4+l—4 5(2 Im:2.5-—l‘5005£:1.2
2 2 2x3 6

3
X, =25-15c0s 2 =25
6

3
X = 2.5—1.5(:0:s~6E =38

AT

T8 15, \
30°/~ | --{30°

1\ 1.2 25 38| /4
|

N 3 -

B sog
Figure 5.36 shows Chebychev spacing of
accuracy points by graphical method.
Let subscripts s and f indicate the start and final

values in the range.
The corresponding values of y,

3 = 1315y =3.953 3 =7.408;
Also, y, =1'" =1; and y, =4'" =8

Range of x=x,-x,=4-1=3
Rangeof y=y, -y =8-1=7

8, = 30° +-12°—‘39-(1‘2-1) = 36°;
=60“+—]}—0—8%—(1.325—1)=63.2°:

90°

6, =30° +——(25-1)=75";

@, = 60° + 720 (3.953-1) = 89.5°%;
6, =30° + 920 (3.8-1)=114%

@, = 60° + 70" (7.408—1)=124.1°;

7
Now, kicos 63.2° +k, cos 36°+ ky = cos

(36° -- 63.2°) = cos 27.2°
kicos 89.5° + k, cos 75°+ &y = cos
(75° — 89.5%) = cos 14.5¢
kicos 124.1° + k, cos 114°+ &, = cos
(114° - 124.1°) = cos 10.1¢
Solving by Cramer’s rule,
hy=2286;k=-198; ky= 1461

Now, "¢/ = 30 mm
k, = 39 =2.286
a
30
k': =—-—— =_-}198 or
Iy

or a=13.1mm

c=152 mm

22 2 2
k3:I3.l b +152° 430 or b =268 mm
’ 2x13.1x152

Thus, a, b, ¢ and o are 13.1 mm, 26.5 mm,
15.2 mm and 30 mm respectively.

=

The mechanism is shown in Fig. 5.37 in three
positions,
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‘PATH GENERATION

A four-link mechanism 4ABCD with a coupler point £ is
shown in Fig. 5.38. Three positions of the input link (8,
6,, 8;) and three positions of the coupler point E given
by three values of r and ¢, ie., r\. ry, 7y and o, 0,
are known. It is required to find the dimensions of a, ¢, e
and falong with the location of the pivots 4 and D given
by g, ¥ and A, y respectively so that the coupier point £
generates the specified path with the motion of the input
link 48.

For the loop O4BE, considering the links to be vectors

goosy+tacos @+ecos B-reosx=0 (5.5)

and gsiny+tasin@+esinB-rsina=0 (5.6) ,
or ecos B=rcos @+ gcosy-acos @ ”;KW
and esinfB=rsina+gsiny-asing =

f
!

It

‘)

Squaring and adding, -
e = +g*+a’— 2gr (cos o cos ¥ ~ sin e sin kigjﬁ

+ 2ag {cos 8 cos ¥+ sin 8sin Y - 2ar (cos Hcos o+ sin Fsin @)

of  2arcos (8- @) +2grcos (e -y} + (2 —at - g} = ¥ + 2ag cos (8- 1)

or  2arcos (68— o)+ 2grcos (@—y} + k=1 + 2ag cos (8- ¢) a7

where

k=el—a? - gt (5.8)

Inserting the values of r|, ry, r3; @, . 0y 2nd B, 8, 6,, we obtain three equations. The unknowns are
a, g, e and ¥. Thus, for three equations, there are four unknowns and therefore, equations cannot be solved.
However, the value of one of the unknown can be assumed. Assuming the value of 7, we are left with three
unknowns . g, e and there are three equations to solve them,

Even now, the equations cannot be solved as such, as these are non-linear equations. However, by making
the following substitutions, these can be solved easily.

Let
a=1,+Am,
g=1,+Am, (5.9)
where A =ag
= (I, + km,) (U, + hm.)
=L+ Mm + Mom, + Nomm,
or man A2+ (Lmg +im, —DA+ 1,1 =0
or AV +BA+C=0
or
. —B+VB -44C
Az —————— (5.10)
2A
where

A=mamg
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B=lm,+im, -1

C=11,
Thus, Eq. (5.7) becomes,

20/, + km)r cos (68— @)+ 2, + Am)r cos (- ¥} + I + Amy = 2+2Acos (8- 7)
Separating the components into two groups; one with and the other without A,

L{2r cos (B—a)] + 1, [2r cos(a— y)] + ;= 1 (5.11)

m,[2r cos(6 - )] +m, [2rcos (o — P] +m=2cos {0~ P (5.12}
From Eq. (5.11), three equations can be written as,

1, [2r cos (8, - ax )] + I, [2ry cos (o | — P+ f, =r] (5.13)

1, (2r, cos (6, — 0t )] + I [2ry cos (@, - Y] + =1} (5.14)

1, {2r;cos (B, — o)) + 1, 2ry cos (@ - ] + =1} (5.15)

These are three linear equations /,, /, and /, and can be solved by applying Cramer’s rule or by other
means.
Similarly, m,, m,, and m, can also be found.

Asly, I, I, and m,, m,, m have been found, a, g and k can be calculated from the relations of Eq. (5.9).

Also, e=Jk+ a’ + g2 [from Eq. (5.8)]

From Eq. (5.5), three values of § can be found,
ecos f=rcosor —gcosy —a cos @

B =cos™ [

Similarly, £ and B, can be found.
Thus, we have obtained the values of @, ¢, g, ¥ and f. The whole procedure can be repeated for the loop
ODCE. The following equations are formed,

1 oS &, -gcosy—acosf)]}
e

{5.16)

hcos yw+ceos g+ feos S—rcosa=0 (517
hsiny+ csin@+fsind-rsina=0 (5.18)
These equations are similar to Eqs (5.5) and (3.6).
Assuming f=l+Am
h=1+m,
p=1+xm,
Two sets of equations similar to Eqs (5.11) and (5.12) are obtained by eliminating ¢ as given below:
l[2r cos (b—o))+ 4 [2rcos{o - W)]+1P=12 (5.19)
m{2rcos (8- )]+ m, [ 2r cos (@ — )] +m, =2 cos (5- y) (5.20)

In these equations, ¢ and r are known. ¥ can be assumed. Also, assuming &, the values of &, and &, can
be found as follows:
The angular displacements of the coupler link BCE is the same at the points B and C,

&-86=5-5
or & =8 +(f-5) (3.21)
Similarly, )

8, =8 +(B~ B (5.22)

Solving the Eqs (5.19) and (5.20), the values of £, # and ¢ can be known.
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As the points 4, B, E, C and D are located, the dimensions a, b, ¢, d. ¢ and f'can be obtained.
Figure 5.39 shows a program for the solution of such a problem.

#include<stdio.h>
#include<conic.h>
#include<math,hs>
volid main()
{
FILE*fp;
int k,is
float al,a2,a3,all,a22,a33,at2,a2l,9l12,g921,el2,e2l,akl,
akZ,ak3,all,al2,al3,aa,qgl,g2,93,t11,t22,t33,thbl, thZ, tb3,
gg,gamm, ss,s1,d11,d22,d33,rl, 2, v3,pl,p2,p3,t1,%2, 3,
cl,c2,c3,alg,ala,alk,ama, amng, amk,bb,cc,all,el, e, squ,
betl,bet2,bet3,pll,p22,p33,23,9s8,del,dell,del2, del3, rad;
clrscri);
printf{“Enter values of tbl,tbi,tb3,rl,r2,r3,all,all,
atZ,al3,”);
printf (“gamm, si,delli\n"};
scanf (M3f&fEferefeFrarsfeesfefss, athl, &tb2, 6tbh3, &xrl,
&r?,&r3,&all,&al?, &al3, sgamm, 451, &dell)
rad=4*atan{i}/180;
tli=tbhl*rad;
t22=th2*rad;
t33=tbh3*rad;
all=al.*rad;
aZ2=al2*rad;
aid=ali*rad;
gg=gamm*rad;
ss=si*rad;
dll=deli*rad;
for{j=0;3<3;3-H)
{
pl=2*rl*cos{tll-all};
p2=2*r2*cos{t22-all);
p3=Z*r3*ces (£33-a33);
tl=2*ri*cos(all-gu):
t2=2%rZ*cos{aZz-ggl;
t3=2*r3*coz(a33-gg);
cl=rl*rl;
c2=r2*rl;
ci3=r3*r3;
for (k=0; k<2;k++)
{
del=pl* (t2-t3)+t1* (p3-p2)+(p2*L3-p3*t2};
Gell=cl* {(t2-t3)+ti* (c3-c2)+{c2*t3-a3*t2);
delZ=pl*{c2-c3)+cl*(pI-p2i+(p2*c3-p3*cl};
del3=pi¥{t2*c3-t3*c2)+ul* {c2¥p3~c3*pl};
+el* (p2*t3-p3vti):
akl=dell/del;
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ak2=del?/del;
ak3=del3/del;
1E (k==0}
{
ala=akl;
alg=ak2;
alk=ak3;
cl=2*cos {tll-gg};
cZ=2%cos (t22-gg);
c3=2*cos (£33-gqg);
1
}
ama=akl;
amg=ak2;
amk=ak3;
aa=ama*amg;
bb=ala*amg+alg*ama-1;
cc=ala*alg;
squ=bb*bb-4*aa*cc;
if (squ>0)
{
all=sqrtisqu):
all=(-bb-all)/(2*aa};
al2=(-bb+all)/{2*aa);
al=alat+all*ama;
gl=alg+all*amg;
aZ=ala+alZ*ama;
gZ2=alg+alZ*amg;
el=sqrt{alk+all*amk+al*al+gl*gl);
eZ=sqrt (alk+al2*amk+a2*a2+g2+g2);
1f {j==0}Y{printf (" g a a”);
printf (™ h c fin*); }
1f{j==1){printf{™%8.2f %8.2f %B.2f 3B.2f %8.2f %8.2Ff
\n”,gl2,al12,e12,ql,el,al};
printf (“%8.2f %8.2f %8.2f %8.2f %8.2f %B.2f\n",
gl2,al2,el12,92,e2,a2); }
1f (3==2) {printf{"%8.2f %8.2f %8.2f %8.2f %8.2f
£8.2f \n",g21,a21,e21,9l,el,al};
printf ("%8.2f %8.2f %8.2f %8.2f %8.2f %8.2f \n",
g2l,alZ,e2l,qg2,e2,a2); 1}
if {(j==0
{
glZ=gl;
alz=al;
eli=el;
g2l=g2;
azl=al;
ell=e?;
gs=gg;
pll=tll;
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pR2=t22;
p33=t33;
}
if {3==1)
{

gl=g21;

al=a2l;

el=a2l;
tll=dll;
£22=d22;
£33=d33;
gg=gs7
tll=pli;
£22=p22;
£33=p33;

}
betl=acos((rl*cos{ali)—gl*ces(gg)—al*cos(tll)}/el);
bet2=acos((r2*cos(a22)—gl*cos(gg)—al*cos(t22»/el);
bet3=acos((r3*cos(a33)—gl*cos(gg)-al*cos(tBB»}/el):
d22=dll+bet2-betl;
d33=dlli+bet3-betl;
a3=a2;
g3=qgZ;
eld=e2;
pll=tll;
p22=t22;
p33=t33;
tll=dll;
t22=d22;
£33=d33;
gs=99;
gg=55;

1
}
getch(};
t

e 598

The input variables are:

thl, tb2, tb3 angular displacement of the input link AB (degrees)
rl, r2, r3 radial distances of the coupler point from origin (mm)
all, alz, al3 angular position of the coupler point (degrees)

gamm assumed value of the angle y (degrees)

si assumed value of the angle y (degrees)

dell ' assumed value of the angle 5, (degrees)

The output variables are
g, a, e, h, ¢, £ distances ot lengths of the links in mm

If more than three positions of the input link along with the same number of positions of the coupler point
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are known, the mechanism can be synthesized using the least-square technique. The deviations of the coupler
point £ from the prescribed positions will be minimum in such a design. Thus,

Si= {4 {2rcos(® —a)} + 1 {2rcos(a ~ )} +1, - ~P
S;= [m, {2rcos (68— )} + my {2r cos (00 ~ ¥)} +my - 2 cos (8- @))?
For minimum deviations,

8s, . 85, _ 85,

=0, =L=p, Slog
IR ol 3,
and
85, 85 s
ol 8l LA
85
when =0,
8,

?2 [s’a2rcos (B-ayti 2reos(—y)+i, - rz].Zrcos @-a)=0

or i, )E[Zrcos @~ a)]z +i, )E[2rcos (- y_)][2rcos (@ - a)}
1 t
+, i[?r cos (6'—0{)] = Z[Zr cos (l";‘—o:)]r2
1

as;

Similarly for %SL =0 an

K

L i[Zr cos (8 - 0‘)][2"‘305 (- }’)J +i, i[Zrcos @- Y)]z
: i

=0,

A ﬁ[zrcos @-y)|= i[Zr cos (@~ ¥)|r
| 1
1y }E[zrcos(e—a)]ﬁg f[zrcos (ox - y)}h‘k = irz
1 1 ’ 1

Inserting # values of r, &, 8{given) and one value of y {assumed), 7, 1, and /,_can be calculated by using
the Cramer’s rule, etc.
. . .. 85, &S, 58,
Similarly, using the conditions —= = 0,—= = ¢and :‘5_{; =0, the values of m,, m, and my_can be found.
3

8, &I
a 4
The rest of the procedure is as given earlier for three values of ¢, Band r.

Example 512 Design a Jour-link Assume thg vaiues of ¥, y and 8, as 20°, 10° and

mechanism to  coordinate 150° respctively. .
three positions of the input Solution: | The procedure is as follows:
link with three positions of (a) Solve the simultaneous Egs (5.13), (5.14)
the coupler point, the data akd (5.15) and obtain
Jor which is given below: _ - -

6= 110° 1 80w e 5o { .8.]4 I, 3:8.5? =11153

8,=77° ry= 90 mm a, = 56° (b) Write three equations from Eq. (5.12) and

8, =50° ry=96mm ;=48 obtain



m,= 000958 m,=0.0173  m,=-3.043
Find two values of 4 using Eq. (5.10).
A, =945 A,=2001

Using A = 945, obtain 4. g and k£ from
relations given in Eq. (5.9). Also, find e from
the relation of Eq. (5.8).

a=172 g=55 ¢=394

Using three relations for 8 {Eq. (5.16)], find
By, B Bs.

B, =107.7° B,=97.5° B, =87.7°
Thus, all the parameters for the loop OABEQ

(e)

are known.

(f) Obtain &, and &, from relations of Eqs (5.21}
and (5.22).
4. =139.8° &, = 130.1°
The same procedure is adopted for the loop
ODCEQ.

(g) Solving Egs (5.19) and (5.20), the following
values are obtained:
L=7115 /,=62.16 {, = 1688
m;=0.0262 m,=000342 m,=-221
(h) Writc three equations similar to Eq. (5.9} in
A”and obiain
A =-9507 A5 =5197
When A7=--9507; f=-320.3; k= 29.7 and
¢=7355.2
When A"= 5197, f=651; h=799and
=285

Assume that a rigid body A/KL is required to be guided through three finitely separated positions as shown

11 MOTION GENERATION (RIGID-BODY GUIDANCE}
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&

(i) When A =2001, another set of @, g and ¢ and
two more sets of f; 4 and ¢ are obtained,

Enter wvalues oftbl, tb2, th3i, fl, r2,
r3, all, al?, al3, gamm, si, dell

11 0 707 s 0 8 0 9 0 9 &
=5 56 43 20 10 150

g a @ k [ £
24,95 17,200 39.<L0 20089 355,21 -320.28
Z4.85 7,20 39,40 79%.91  2E.50 £5.04
T3.02h 270310 330680 230310 98670 47,12
T3LEH 27030 33.s® L03.50  zolov 71.12
Fig. 544

Figure 5.40 shows the inpui and the four sets
of values obtained by using the program of
Fig, 5.39,

Figure 5.4! shows the solution obtained from the
second set.

in Fig. 5.42, The three positions of the body may be specified by taking any line on the body and marking
a point £ on the same. Then three positions of the point £ may be specified by the radial distances from the
assumed origin and its angular positions, k.., by 7. @ 1, &, and r;, ¢; and angular inclination of the line

with the x-axis by the angles 8, 8, and §;.

Now if it is assuined that the body is fixed to the coupler link, it becomes a problem similar to that of path
generation except that now three values of § are known instead of @ Thus, now angle @ can be eliminated
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from Eq. (5.5) and (5.6) instead of B. The equations
formed are exactly the same if 8 is replaced by fin Egs
(5.11) and (5.12). Also, as B is directly known, there is
no need of using Eq. 5.16.

The program given in Fig. 5.43 solves this type of
problem. The input variables are

#include<stdic.h>
#include<conio.bh>
#include<math.h>
volid main ()
{
FILE *fp;
int k,3;
float al,az,a3,all,a?2,a33,alz2,az2l,al?
,g92l,el2,e2],akl,
ak2,ak3,all,al2,al3,aa,gl,g2,93,tll,t %gs‘a
22,t33,tbhl,tb2, : b
tb3,qg,gamm, 35,51,411,d22,333,rl,r2,r
3, pl,p2,p3,t1,t2,
t3,cl,c2,c3,alg,ala,alk, ama, amg, amk, bbb, cc,all,el, e,
squ,betl,bet2,pet3,pll,p22,p33,e3,9s,del,dell,del?2,
dell3, rad;
clrscrf )
printf {(*Enter values of thl,tb2,tbhi, rl,xr2,r3,al1l,all,”);:
printf(®al?,al?, gamm,si,dell\n");
scanf ("SESFAfafa e fsfeeersfse”, sthl, 6tb2, &th3,4rl, 412,
sr3,tall,&alz, &al3, sgamm, &51, &dell);
rad=4*atanil) /180;
tll=tbhl*rad;
tZZ=th2*rac;
t33=tb3*rad;
all=all*rad;
azz=alZ*rad;
a33=al3*rad;
gg=gamm*rad;
ss=si*rad;
dll=dell*rad;
for {j=0; Jj<3:; J-+}
{
pl=2;rl*costtll—all};
p2=2*r2*cos{t22-azl);
p3=2*ri*cos{t33-al3li};
tl=2*ri*cos{all-ggl:
t2=2*r2*cos{al22-ggi;
t3=2*r3*cos{a33-qag};
cl=rl*rl;
C2=rz2*r2 ;
c3=r3*ri;
for{k=0;k<2;kt+)
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del=pl* (t2-t3) +L1* (p3-p2) +{p2~t3-p3i*L2);
dell=cl*{t2-t3)+tl*{c3-c2)+{c2*t3-c3*t2);
del2=pl*{c2-c3)+cl* (p3-p2)+{p2*c3-p3*c2};
del3=pl* (E2*C3-t3*c2) +t1¥ (c2*p3-c3*p2)
tel* (p2*t3-p3*t2);
akl=dell/del;
ak2=delZ/del;
ak3=del3/del;

if (k==0)

{

ala=akl:;

alg=ak2;

alk=ak3;

cl=2*cos (tll-gg)};

cZ=2*gos (t22-~gy):

c3=2*cos (t33-gg):

t
1
ama=akl;
amg=ak2:
amk=ak3:
aa=ama*amg:
bEb=ala*amg+alg*ama-1:
ce=ala*alg;
squ=bb*bb-4*aa*cc:
if {squ>Q)
{

alli=sgrt (squ):

all=(-bb-all)/(Z*aa):
alz2={(-bb+all)/{2*aa):

al=alatall*ama:

gl=alg+all*amg:

aZ=ala+alZl*ama;

gZ=alg+all*amg:
el=sgrt{alk+all*amktal*al+gl*gl):
eZ=sqrt{alk+al2*amk+az*aZ+g2*gi):

1f{j==0) ( printf(* g e a'}

printf£{* h c fin™y }

if (j==1) (printf{™%8.2f &8.2f %8.2f %8.2f %8,2f
%8.2f \n”,gl2,a12,el2,g9l,el,al):
printf(“%8.2f %8.2f %8.2f %8.2f %8.2f %8.2f \n”,
glz,alz,el2,gl,e2,a2): }
if(j==2){printf(*%8.2f %8.2f %8.2f %8.2f %8.2¢
$8.2f \n",g2l,adl,e2l,gl,el,al}:
printf{“%8.2f %8.2f %B.2f %B.2f %8.2f 38.2f \n”,
g2l,a2l,e2l,qg2,e2,a2);}

if (3==0)

{
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alz=al;
elZ=el:
g2l=g2:
azl=az:
ell=ez:
gs=gg:
pll=t11:
p22=t22;
p33=t33:

if (§==1)

gl=cz2l:
al=a2zl:
el=ez1;
tll=dll:
t22=d22:
t33=d33:
gg=gs:
til=pll;
L22=p22;
t33=p33;
}

d22=dl1+c22-t11;

d33=dll +t33-t11;

a3d=az;

g3=g2;

ael=al;

pll=tll;

p22=t22;

p33=t33;

r11=dl1l;

t22=d22;

t33=d33;

gs=gg;

gg=58;

}

getch( };
}

The input variables are
thl, tb2, tb3
rl, r2, r3

all, alz, ail3
gamm

o 5

angles B, B, and g, respectively (degrees)
radial distances of point £ from the origin (mm)
angular position of point E (degrees)

assumed value of the angle ¥ (degrees)



